check_point_clouds¶
-
gtda.utils.
check_point_clouds
(X, distance_matrices=False, **kwargs)[source]¶ Input validation on arrays or lists representing collections of point clouds or of distance/adjacency matrices.
The input is checked to be either a single 3D array using a single call to
sklearn.utils.validation.check_array
, or a list of 2D arrays by callingsklearn.utils.validation.check_array
on each entry.- Parameters
X (object) – Input object to check / convert.
distance_matrices (bool, optional, default:
False
) – Whether the input represents a collection of distance matrices or of concrete point clouds in Euclidean space. In the first case, entries are allowed to be infinite unless otherwise specified in kwargs.**kwargs – Keyword arguments accepted by
sklearn.utils.validation.check_array
, with the following caveats: 1) ensure_2d and allow_nd are ignored; 2) if not passed explicitly, force_all_finite is set to be the boolean negation of distance_matrices; 3) when force_all_finite is set toFalse
, NaN inputs are not allowed; 4) accept_sparse and accept_large_sparse are only meaningful in the case of lists of 2D arrays, in which case they are passed to individual instances ofsklearn.utils.validation.check_array
validating each entry in the list.
- Returns
Xnew – The converted and validated object.
- Return type
ndarray or list