Overview¶
A high-performance topological machine learning toolbox in Python
giotto-tda
is a high performance topological machine learning toolbox in Python built on top of
scikit-learn
and is distributed under the GNU AGPLv3 license. It is part of the Giotto family of open-source projects.
Guiding principles¶
Seamless integration withscikit-learn
Strictly adhere to thescikit-learn
API and development guidelines, inherit the strengths of that framework. Code modularityTopological feature creation steps as transformers. Allow for the creation of a large number of topologically-powered machine learning pipelines. StandardisationImplement the most successful techniques from the literature into a generic framework with a consistent API. InnovationImprove on existing algorithms, and make new ones available in open source. PerformanceFor the most demanding computations, fall back to state-of-the-art C++ implementations, bound efficiently to Python. Vectorized code and implements multi-core parallelism (withjoblib
). Data structuresSupport for tabular data, time series, graphs, and images.
30s guide to giotto-tda
¶
For installation instructions, see the installation instructions.
The functionalities of giotto-tda
are provided in scikit-learn
–style transformers.
This allows you to generate topological features from your data in a familiar way. Here is an example with the VietorisRipsPersistence
transformer:
from gtda.homology import VietorisRipsPersistence
VR = VietorisRipsPersistence()
which computes topological summaries, called persistence diagrams, from collections of point clouds or weighted graphs, as follows:
diagrams = VR.fit_transform(point_clouds)
A plotting API allows for quick visual inspection of the outputs of many of giotto-tda
’s transformers. To visualize the i-th output sample, run
diagrams = VR.plot(diagrams, sample=i)
You can create scalar or vector features from persistence diagrams using giotto-tda
’s dedicated transformers. Here is an example with the PersistenceEntropy
transformer:
from gtda.diagrams import PersistenceEntropy
PE = PersistenceEntropy()
features = PE.fit_transform(diagrams)
features
is a two-dimensional numpy
array. This is important to making this type of topological feature generation fit into a typical machine learning workflow from scikit-learn
.
In particular, topological feature creation steps can be fed to or used alongside models from scikit-learn
, creating end-to-end pipelines which can be evaluated in cross-validation,
optimised via grid-searches, etc.:
from sklearn.ensemble import RandomForestClassifier
from gtda.pipeline import make_pipeline
from sklearn.model_selection import train_test_split
X_train, X_valid, y_train, y_valid = train_test_split(point_clouds, labels)
RFC = RandomForestClassifier()
model = make_pipeline(VR, PE, RFC)
model.fit(X_train, y_train)
model.score(X_valid, y_valid)
giotto-tda
also implements the Mapper algorithm as a highly customisable scikit-learn
Pipeline
, and provides simple plotting functions
for visualizing output Mapper graphs and have real-time interaction with the pipeline parameters:
from gtda.mapper import make_mapper_pipeline
from sklearn.decomposition import PCA
from sklearn.cluster import DBSCAN
pipe = make_mapper_pipeline(filter_func=PCA(), clusterer=DBSCAN())
plot_interactive_mapper_graph(pipe, data)
Resources¶
Tutorials and examples¶
We provide a number of tutorials and examples, which offer:
quick start guides to the API;
in-depth examples showcasing more of the library’s features;
intuitive explanations of topological techniques.
What’s new¶
Major Features and Improvements¶
This is a major release which substantially broadens the scope of giotto-tda
and introduces several improvements.
The library’s documentation has been greatly improved and is now hosted via GitHub pages.
It includes rendered jupyter notebooks from the repository’s examples
folder, as well as an improved theory glossary,
more detailed installation instructions, improved guidelines for contributing, and an FAQ.
Plotting functions and plotting API¶
This version introduces built-in plotting capabilities to giotto-tda
. These come in the form of:
a new
plotting
subpackage populated with plotting functions for common data structures;a new
PlotterMixin
and a class-level plotting API based on newly introducedplot
,transform_plot
andfit_transform_plot
methods which are now available in several ofgiotto-tda
’s transformers.
Changes and additions to gtda.homology
¶
The internal structure of this subpackage has been changed. ConsistentRescaling
has been moved to a new point_clouds
subpackage (see below), and gtda.homology
no longer contains a point_clouds
submodule. Instead, it contains two
submodules, simplicial
and cubical
. simplicial
contains the VietorisRipsPersistence
class as well as the
following new classes:
SparseRipsPersistence
,EuclideanCechPersistence
.
The cubical
submodule contains CubicalPersistence
, a new class for computing persistent homology of filtered cubical
complexes such as those coming from 2D or 3D greyscale images.
New images
subpackage¶
The new gtda.images
subpackage contains classes which, together with gtda.homology.CubicalPersistence
, extend
the capabilities of giotto-tda
to computer vision, by handling input representing binary or greyscale 2D/3D images
represented as arrays.
The classes in gtda.images.filtrations
are responsible for converting binary image input into greyscale images in a
variety of ways. The greyscale output can then be fed to gtda.homology.CubicalPersistence
to extract topological
signatures in the form of persistence diagrams. These classes are:
HeightFiltration
,RadialFiltration
,DilationFiltration
,ErosionFiltration
,SignedDistanceFiltration
.
The classes in gtda.images.preprocessing
perform a variety of preprocessing steps on either binary or greyscale image
input, as well as conversion to point cloud format. They are:
Binarizer
,Inverter
,Padder
,ImageToPointCloud
.
New point_clouds
subpackage¶
ConsistentRescaling
is no longer placed in gtda.homology
. Instead, it is now in a point_clouds
subpackage
containing classes which process or modify the geometry of point cloud data. gtda.point_clouds
also contains the new
class ConsecutiveRescaling
, written with time series applications in mind.
List of point cloud input¶
All classes in the homology
subpackage (VietorisRipsPersistence
, SparseRipsPersistence
, and EuclideanCechPersistence
)
can now take as inputs to the fit
and transform
methods lists of 2D arrays instead of simply 3D arrays. In this
way, collections of point clouds with varying numbers of points can be processed.
Changes and additions to gtda.diagrams
¶
The diagrams
subpackage contains the following new classes:
PersistenceImage
Silhouette
Additionally, the subpackage has been reorganised as follows:
The
features
submodule now only contains the scalar feature generation classesAmplitude
(moved there fromdistance
) andPersistenceEntropy
.Classes which produce vector representations from persistence diagrams have been moved to the new
representations
submodule.
Changes and additions to gtda.utils
¶
validate_params
has been thoroughly refactored, documented and exposed for the benefit of developers.check_diagrams
has been modified, documented and exposed for the benefit of developers.The new
check_point_clouds
performs validation of inputs consisting of collections of point clouds of distance matrices. It accepts both lists of 2D ndarrays and 3D ndarrays, and is used in thefit
andtransform
methods of classes ingtda.homology.simplicial
to allow for list input (see above).
External modules and HPC improvements¶
A substantial effort has been put in improving the quality of the high-performance components contained in gtda.externals
.
The end result is a cleaner packaging as well as faster execution of C++ functions due to improved bindings. In particular:
Two binaries are now shipped for
ripser
, one of them being optimised for calculations with mod 2 coefficients.Recent improvements by the authors of the
hera
C++ library have been integrated ingiotto-tda
.Compiler optimisations for Windows-based systems have been added.
The integration of
pybind11
has been improved and several issues arising withCMake
andboost
during developer installations have been addressed.
Bug Fixes¶
Fixed a bug with
TakensEmbedding
’s algorithm for search of optimal parameters.Inconsistencies in between the meaning of “bottleneck amplitude” in the theory and in the code have been ironed out. The code has been modified to agree with the theory glossary. The outputs of the
gtda.diagrams
classesAmplitude
,Scaler
andFiltering
is affected.Fixed bugs affecting color normalization in Mapper graph plots.
Backwards-Incompatible Changes¶
Python 3.5 is no longer supported.
Mac OS X versions below 10.14 are no longer supported by the wheels shipped via PyPI.
ConsistentRescaling
is no longer found ingtda.homology
and is now part ofgtda.point_clouds
.The outputs of the
gtda.diagrams
classesAmplitude
,Scaler
andFiltering
have changed due to sqrt(2) factors (see Bug Fixes).The
meta_transformers
module has been removed.The
plotting
module has been removed from theexamples
folder of the repository.
Thanks to our Contributors¶
This release contains contributions from many people:
Umberto Lupo, Guillaume Tauzin, Wojciech Reise, Julian Burella Pérez, Roman Yurchak, Lewis Tunstall, Anibal Medina-Mardones, and Adélie Garin.
We are also grateful to all who filed issues or helped resolve them, asked and answered questions, and were part of inspiring discussions.