Padder¶
-
class
gtda.images.
Padder
(padding=None, value=False, n_jobs=None)[source]¶ Pad all 2D/3D images in a collection.
- Parameters
padding (int ndarray of shape (padding_x, padding_y [, padding_z]) or None, optional, default:
None
) – Number of pixels to pad the images along each axis and on both side of the images. By default, a frame of a single pixel width is added around the image (1 = padding_x = padding_y [= padding_z]
).value (bool, int, or float, optional, default:
0
) – Value given to the padded pixels. It should be a boolean if the input images are binary and an int or float if they are greyscale.n_jobs (int or None, optional, default:
None
) – The number of jobs to use for the computation.None
means 1 unless in ajoblib.parallel_backend
context.-1
means using all processors.
-
padding_
¶ Effective padding along each of the axes. Set in
fit
.- Type
int ndarray of shape (padding_x, padding_y [, padding_z])
References
- 1
A. Garin and G. Tauzin, “A topological reading lesson: Classification of MNIST using TDA”; 19th International IEEE Conference on Machine Learning and Applications (ICMLA 2020), 2019; arXiv:1910.08345.
-
__init__
(padding=None, value=False, n_jobs=None)[source]¶ Initialize self. See help(type(self)) for accurate signature.
-
fit
(X, y=None)[source]¶ Calculate
n_dimensions_
andpadding_
from a collection of images. Then, return the estimator.This method is here to implement the usual scikit-learn API and hence work in pipelines.
- Parameters
X (ndarray of shape (n_samples, n_pixels_x, n_pixels_y [, n_pixels_z])) – Input data. Each entry along axis 0 is interpreted as a 2D or 3D image.
y (None) – There is no need of a target in a transformer, yet the pipeline API requires this parameter.
- Returns
self
- Return type
object
-
fit_transform
(X, y=None, **fit_params)¶ Fit to data, then transform it.
Fits transformer to X and y with optional parameters fit_params and returns a transformed version of X.
- Parameters
X (ndarray of shape (n_samples, n_pixels_x, n_pixels_y [, n_pixels_z])) – Input data. Each entry along axis 0 is interpreted as a 2D or 3D image.
y (None) – There is no need of a target in a transformer, yet the pipeline API requires this parameter.
- Returns
Xt – Transformed collection of images. Each entry along axis 0 is a 2D or 3D binary image.
- Return type
ndarray of shape (n_samples, n_pixels_x + 2 * padding_x, n_pixels_y + 2 * padding_y [, n_pixels_z + 2 * padding_z])
-
fit_transform_plot
(X, y=None, sample=0, **plot_params)¶ Fit to data, then apply
transform_plot
.- Parameters
X (ndarray of shape (n_samples, ..)) – Input data.
y (ndarray of shape (n_samples,) or None) – Target values for supervised problems.
sample (int) – Sample to be plotted.
**plot_params – Optional plotting parameters.
- Returns
Xt – Transformed one-sample slice from the input.
- Return type
ndarray of shape (1, ..)
-
get_params
(deep=True)¶ Get parameters for this estimator.
- Parameters
deep (bool, default=True) – If True, will return the parameters for this estimator and contained subobjects that are estimators.
- Returns
params – Parameter names mapped to their values.
- Return type
mapping of string to any
-
static
plot
(Xt, sample=0, colorscale='greys', origin='upper', plotly_params=None)[source]¶ Plot a sample from a collection of 2D binary images.
- Parameters
Xt (ndarray of shape (n_samples, n_pixels_x, n_pixels_y)) – Collection of 2D binary images, such as returned by
transform
.sample (int, optional, default:
0
) – Index of the sample in Xt to be plotted.colorscale (str, optional, default:
'greys'
) – Color scale to be used in the heat map. Can be anything allowed byplotly.graph_objects.Heatmap
.origin (
'upper'
|'lower'
, optional, default:'upper'
) – Position of the [0, 0] pixel of data, in the upper left or lower left corner. The convention'upper'
is typically used for matrices and images.plotly_params (dict or None, optional, default:
None
) – Custom parameters to configure the plotly figure. Allowed keys are"trace"
and"layout"
, and the corresponding values should be dictionaries containing keyword arguments as would be fed to theupdate_traces
andupdate_layout
methods ofplotly.graph_objects.Figure
.
- Returns
fig – Plotly figure.
- Return type
plotly.graph_objects.Figure
object
-
set_params
(**params)¶ Set the parameters of this estimator.
The method works on simple estimators as well as on nested objects (such as pipelines). The latter have parameters of the form
<component>__<parameter>
so that it’s possible to update each component of a nested object.- Parameters
**params (dict) – Estimator parameters.
- Returns
self – Estimator instance.
- Return type
object
-
transform
(X, y=None)[source]¶ For each binary image in the collection X, adds a padding. Return the collection of padded binary images.
- Parameters
X (ndarray of shape (n_samples, n_pixels_x, n_pixels_y [, n_pixels_z])) – Input data. Each entry along axis 0 is interpreted as a 2D or 3D image.
y (None) – There is no need of a target in a transformer, yet the pipeline API requires this parameter.
- Returns
Xt – Transformed collection of images. Each entry along axis 0 is a 2D or 3D binary image.
- Return type
ndarray of shape (n_samples, n_pixels_x + 2 * padding_x, n_pixels_y + 2 * padding_y [, n_pixels_z + 2 * padding_z])
-
transform_plot
(X, sample=0, **plot_params)¶ Take a one-sample slice from the input collection and transform it. Before returning the transformed object, plot the transformed sample.
- Parameters
X (ndarray of shape (n_samples, ..)) – Input data.
sample (int) – Sample to be plotted.
**plot_params – Optional plotting parameters.
- Returns
Xt – Transformed one-sample slice from the input.
- Return type
ndarray of shape (1, ..)