Inverter¶
-
class
gtda.images.
Inverter
(max_value=None, n_jobs=None)[source]¶ Invert all 2D/3D images in a collection.
Applies an inversion function to the value of all pixels of all images in the input collection. If the images are binary, the inversion function is defined as the logical NOT function. Otherwise, it is the function \(f(x) = M - x\), where x is a pixel value and M is
max_value_
.- Parameters
max_value (bool, int, float or None, optional, default:
None
) – Maximum possible pixel value in the images. It should be a boolean if input images are binary and an int or a float if they are greyscale. IfNone
, it is calculated from the collection of images passed infit
.n_jobs (int or None, optional, default:
None
) – The number of jobs to use for the computation.None
means 1 unless in ajoblib.parallel_backend
context.-1
means using all processors.
References
- 1
A. Garin and G. Tauzin, “A topological reading lesson: Classification of MNIST using TDA”; 19th International IEEE Conference on Machine Learning and Applications (ICMLA 2020), 2019; arXiv:1910.08345.
-
__init__
(max_value=None, n_jobs=None)[source]¶ Initialize self. See help(type(self)) for accurate signature.
-
fit
(X, y=None)[source]¶ Calculate
n_dimensions_
andmax_value_
from the collection of images. Then, return the estimator.This method is here to implement the usual scikit-learn API and hence work in pipelines.
- Parameters
X (ndarray of shape (n_samples, n_pixels_x, n_pixels_y [, n_pixels_z])) – Input data. Each entry along axis 0 is interpreted as a 2D or 3D image.
y (None) – There is no need of a target in a transformer, yet the pipeline API requires this parameter.
- Returns
self
- Return type
object
-
fit_transform
(X, y=None, **fit_params)¶ Fit to data, then transform it.
Fits transformer to X and y with optional parameters fit_params and returns a transformed version of X.
- Parameters
X (ndarray of shape (n_samples, n_pixels_x, n_pixels_y [, n_pixels_z])) – Input data. Each entry along axis 0 is interpreted as a 2D or 3D image.
y (None) – There is no need of a target in a transformer, yet the pipeline API requires this parameter.
- Returns
Xt – Transformed collection of images. Each entry along axis 0 is a 2D or 3D binary image.
- Return type
ndarray of shape (n_samples, n_pixels_x, n_pixels_y [, n_pixels_z])
-
fit_transform_plot
(X, y=None, sample=0, **plot_params)¶ Fit to data, then apply
transform_plot
.- Parameters
X (ndarray of shape (n_samples, ..)) – Input data.
y (ndarray of shape (n_samples,) or None) – Target values for supervised problems.
sample (int) – Sample to be plotted.
**plot_params – Optional plotting parameters.
- Returns
Xt – Transformed one-sample slice from the input.
- Return type
ndarray of shape (1, ..)
-
get_params
(deep=True)¶ Get parameters for this estimator.
- Parameters
deep (bool, default=True) – If True, will return the parameters for this estimator and contained subobjects that are estimators.
- Returns
params – Parameter names mapped to their values.
- Return type
mapping of string to any
-
static
plot
(Xt, sample=0, colorscale='greys', origin='upper', plotly_params=None)[source]¶ Plot a sample from a collection of 2D binary images.
- Parameters
Xt (ndarray of shape (n_samples, n_pixels_x, n_pixels_y)) – Collection of 2D binary images, such as returned by
transform
.sample (int, optional, default:
0
) – Index of the sample in Xt to be plotted.colorscale (str, optional, default:
'greys'
) – Color scale to be used in the heat map. Can be anything allowed byplotly.graph_objects.Heatmap
.origin (
'upper'
|'lower'
, optional, default:'upper'
) – Position of the [0, 0] pixel of data, in the upper left or lower left corner. The convention'upper'
is typically used for matrices and images.plotly_params (dict or None, optional, default:
None
) – Custom parameters to configure the plotly figure. Allowed keys are"trace"
and"layout"
, and the corresponding values should be dictionaries containing keyword arguments as would be fed to theupdate_traces
andupdate_layout
methods ofplotly.graph_objects.Figure
.
- Returns
fig – Plotly figure.
- Return type
plotly.graph_objects.Figure
object
-
set_params
(**params)¶ Set the parameters of this estimator.
The method works on simple estimators as well as on nested objects (such as pipelines). The latter have parameters of the form
<component>__<parameter>
so that it’s possible to update each component of a nested object.- Parameters
**params (dict) – Estimator parameters.
- Returns
self – Estimator instance.
- Return type
object
-
transform
(X, y=None)[source]¶ For each binary image in the collection X, calculate its negation. Return the collection of negated binary images.
- Parameters
X (ndarray of shape (n_samples, n_pixels_x, n_pixels_y [, n_pixels_z])) – Input data. Each entry along axis 0 is interpreted as a 2D or 3D binary image.
y (None) – There is no need of a target in a transformer, yet the pipeline API requires this parameter.
- Returns
Xt – Transformed collection of images. Each entry along axis 0 is a 2D or 3D binary image.
- Return type
ndarray of shape (n_samples, n_pixels_x, n_pixels_y [, n_pixels_z])
-
transform_plot
(X, sample=0, **plot_params)¶ Take a one-sample slice from the input collection and transform it. Before returning the transformed object, plot the transformed sample.
- Parameters
X (ndarray of shape (n_samples, ..)) – Input data.
sample (int) – Sample to be plotted.
**plot_params – Optional plotting parameters.
- Returns
Xt – Transformed one-sample slice from the input.
- Return type
ndarray of shape (1, ..)