transformer_from_callable_on_rows¶
-
gtda.mapper.
transformer_from_callable_on_rows
(func, validate=True)[source]¶ Construct a transformer from a callable acting on 1D arrays.
Given a callable which can act on 1D arrays, this function returns a fit-transformer which applies the callable to slices of 2D arrays along axis 1. When possible, the array output by the transformer’s
fit_transform
is two-dimensional.- Parameters
func (callable or None) – A callable object, or
None
which returns the identity transformer.validate (bool, optional, default:
True
) – Whether the output transformer should implement input validation.
- Returns
function_transformer – Output fit-transformer.
- Return type
sklearn.preprocessing.FunctionTransformer
object
Examples
>>> import numpy as np >>> from gtda.mapper import transformer_from_callable_on_rows >>> function_transformer = transformer_from_callable_on_rows(np.sum) >>> X = np.array([[0, 1], [2, 3]]) >>> print(function_transformer.fit_transform(X)) [[1], [5]]