PersistenceLandscape¶
-
class
gtda.diagrams.
PersistenceLandscape
(n_layers=1, n_bins=100, n_jobs=None)[source]¶ Persistence landscapes of persistence diagrams.
Given a persistence diagram consisting of birth-death-dimension triples [b, d, q], subdiagrams corresponding to distinct homology dimensions are considered separately, and layers of their respective persistence landscapes are obtained by evenly sampling the filtration parameter.
Important note:
Input collections of persistence diagrams for this transformer must satisfy certain requirements, see e.g.
fit
.
- Parameters
n_layers (int, optional, default:
1
) – How many layers to consider in the persistence landscape.n_bins (int, optional, default:
100
) – The number of filtration parameter values, per available homology dimension, to sample duringfit
.n_jobs (int or None, optional, default:
None
) – The number of jobs to use for the computation.None
means 1 unless in ajoblib.parallel_backend
context.-1
means using all processors.
-
samplings_
¶ For each number in homology_dimensions_, a discrete sampling of filtration parameters, calculated during
fit
according to the minimum birth and maximum death values observed across all samples.- Type
dict
See also
BettiCurve
,PersistenceEntropy
,HeatKernel
,Amplitude
,PairwiseDistance
,Silhouette
,PersistenceImage
,gtda.homology.VietorisRipsPersistence
Notes
The samplings in
samplings_
are in general different between different homology dimensions. This means that the j-th entry of the k-layer of a persistence landscape in homology dimension q typically arises from a different parameter value to the j-th entry of a k-layer in dimension q’.-
__init__
(n_layers=1, n_bins=100, n_jobs=None)[source]¶ Initialize self. See help(type(self)) for accurate signature.
-
fit
(X, y=None)[source]¶ Store all observed homology dimensions in
homology_dimensions_
and, for each dimension separately, store evenly sample filtration parameter values insamplings_
. Then, return the estimator.This method is here to implement the usual scikit-learn API and hence work in pipelines.
- Parameters
X (ndarray of shape (n_samples, n_features, 3)) – Input data. Array of persistence diagrams, each a collection of triples [b, d, q] representing persistent topological features through their birth (b), death (d) and homology dimension (q). It is important that, for each possible homology dimension, the number of triples for which q equals that homology dimension is constants across the entries of X.
y (None) – There is no need for a target in a transformer, yet the pipeline API requires this parameter.
- Returns
self
- Return type
object
-
fit_transform
(X, y=None, **fit_params)¶ Fit to data, then transform it.
Fits transformer to X and y with optional parameters fit_params and returns a transformed version of X.
- Parameters
X (ndarray of shape (n_samples, n_features, 3)) – Input data. Array of persistence diagrams, each a collection of triples [b, d, q] representing persistent topological features through their birth (b), death (d) and homology dimension (q). It is important that, for each possible homology dimension, the number of triples for which q equals that homology dimension is constants across the entries of X.
y (None) – There is no need for a target in a transformer, yet the pipeline API requires this parameter.
- Returns
Xt – Persistence landscapes, where
n_homology_dimensions
is the number of distinct homology dimensions seen infit
. Landscapes coming from different homology dimensions are stacked for each sample, so layerk
of the landscape in thej
-th homology dimension inhomology_dimensions_
isX[i, n_homology_dimensions * j + k]
.- Return type
ndarray of shape (n_samples, n_homology_dimensions * n_layers, n_bins)
-
fit_transform_plot
(X, y=None, sample=0, **plot_params)¶ Fit to data, then apply
transform_plot
.- Parameters
X (ndarray of shape (n_samples, ..)) – Input data.
y (ndarray of shape (n_samples,) or None) – Target values for supervised problems.
sample (int) – Sample to be plotted.
**plot_params – Optional plotting parameters.
- Returns
Xt – Transformed one-sample slice from the input.
- Return type
ndarray of shape (1, ..)
-
get_params
(deep=True)¶ Get parameters for this estimator.
- Parameters
deep (bool, default=True) – If True, will return the parameters for this estimator and contained subobjects that are estimators.
- Returns
params – Parameter names mapped to their values.
- Return type
mapping of string to any
-
plot
(Xt, sample=0, homology_dimensions=None, plotly_params=None)[source]¶ Plot a sample from a collection of persistence landscapes arranged as in the output of
transform
. Include homology in multiple dimensions.- Parameters
Xt (ndarray of shape (n_samples, n_homology_dimensions, n_layers, n_bins) – Collection of persistence landscapes, such as returned by
transform
.sample (int, optional, default:
0
) – Index of the sample in Xt to be plotted.homology_dimensions (list, tuple or None, optional, default:
None
) – Homology dimensions for which the landscape should be plotted.None
means plotting all dimensions present inhomology_dimensions_
.plotly_params (dict or None, optional, default:
None
) – Custom parameters to configure the plotly figure. Allowed keys are"traces"
and"layout"
, and the corresponding values should be dictionaries containing keyword arguments as would be fed to theupdate_traces
andupdate_layout
methods ofplotly.graph_objects.Figure
.
- Returns
fig – Plotly figure.
- Return type
plotly.graph_objects.Figure
object
-
set_params
(**params)¶ Set the parameters of this estimator.
The method works on simple estimators as well as on nested objects (such as pipelines). The latter have parameters of the form
<component>__<parameter>
so that it’s possible to update each component of a nested object.- Parameters
**params (dict) – Estimator parameters.
- Returns
self – Estimator instance.
- Return type
object
-
transform
(X, y=None)[source]¶ Compute the persistence landscapes of diagrams in X.
- Parameters
X (ndarray of shape (n_samples, n_features, 3)) – Input data. Array of persistence diagrams, each a collection of triples [b, d, q] representing persistent topological features through their birth (b), death (d) and homology dimension (q). It is important that, for each possible homology dimension, the number of triples for which q equals that homology dimension is constants across the entries of X.
y (None) – There is no need for a target in a transformer, yet the pipeline API requires this parameter.
- Returns
Xt – Persistence landscapes, where
n_homology_dimensions
is the number of distinct homology dimensions seen infit
. Landscapes coming from different homology dimensions are stacked for each sample, so layerk
of the landscape in thej
-th homology dimension inhomology_dimensions_
isX[i, n_homology_dimensions * j + k]
.- Return type
ndarray of shape (n_samples, n_homology_dimensions * n_layers, n_bins)
-
transform_plot
(X, sample=0, **plot_params)¶ Take a one-sample slice from the input collection and transform it. Before returning the transformed object, plot the transformed sample.
- Parameters
X (ndarray of shape (n_samples, ..)) – Input data.
sample (int) – Sample to be plotted.
**plot_params – Optional plotting parameters.
- Returns
Xt – Transformed one-sample slice from the input.
- Return type
ndarray of shape (1, ..)