Resampler¶
- 
class gtda.time_series.Resampler(period=2)[source]¶
- Time series resampling at regular intervals. - Parameters
- period (int, default: - 2) – The sampling period, i.e. one point every period will be kept.
 - Examples - >>> import numpy as np >>> from gtda.time_series import Resampler >>> # Create a noisy signal >>> signal = np.asarray([np.sin(x /40) + np.random.random() ... for x in range(0, 300)]) >>> # Set up the Resampler >>> period = 10 >>> periodic_sampler = Resampler(period=period) >>> # Fit and transform the signal >>> signal_resampled = periodic_sampler.fit_transform(signal) >>> print(signal_resampled.shape) (30,) - 
fit(X, y=None)[source]¶
- Do nothing and return the estimator unchanged. - This method is here to implement the usual scikit-learn API and hence work in pipelines. - Parameters
- X (ndarray of shape (n_samples,) or (n_samples, ..)) – Input data. 
- y (None) – Ignored. 
 
- Returns
- self 
- Return type
- object 
 
 - 
fit_transform(X, y=None, **fit_params)¶
- Fit to data, then transform it. - Fits transformer to X and y with optional parameters fit_params and returns a transformed version of X. - Parameters
- X (ndarray of shape (n_samples,) or (n_samples, ..)) – Input data. 
- y (None) – Ignored. 
 
- Returns
- Xt – Resampled array. - n_samples_new = n_samples // period.
- Return type
- ndarray of shape (n_samples_new, ..) 
 
 - 
fit_transform_resample(X, y, **fit_params)¶
- Fit to data, then transform the input and resample the target. Fits transformer to X and y with optional parameters fit_params and returns a transformed version of X ans a resampled version of y. - Parameters
- X (ndarray of shape (n_samples, ..)) – Input data. 
- y (ndarray of shape (n_samples,)) – Target data. 
 
- Returns
- Xt (ndarray of shape (n_samples, …)) – Transformed input. 
- yr (ndarray of shape (n_samples, …)) – Resampled target. 
 
 
 - 
get_params(deep=True)¶
- Get parameters for this estimator. - Parameters
- deep (bool, default=True) – If True, will return the parameters for this estimator and contained subobjects that are estimators. 
- Returns
- params – Parameter names mapped to their values. 
- Return type
- mapping of string to any 
 
 - 
resample(y, X=None)[source]¶
- Resample y. - Parameters
- y (ndarray of shape (n_samples,)) – Target. 
- X (None) – There is no need for input data, yet the pipeline API requires this parameter. 
 
- Returns
- yr – Resampled target. - n_samples_new = n_samples // period.
- Return type
- ndarray of shape (n_samples_new,) 
 
 - 
set_params(**params)¶
- Set the parameters of this estimator. - The method works on simple estimators as well as on nested objects (such as pipelines). The latter have parameters of the form - <component>__<parameter>so that it’s possible to update each component of a nested object.- Parameters
- **params (dict) – Estimator parameters. 
- Returns
- self – Estimator instance. 
- Return type
- object 
 
 - 
transform(X, y=None)[source]¶
- Resample X. - Parameters
- X (ndarray of shape (n_samples,) or (n_samples, ..)) – Input data. 
- y (None) – There is no need for a target, yet the pipeline API requires this parameter. 
 
- Returns
- Xt – Resampled array. - n_samples_new = n_samples // period.
- Return type
- ndarray of shape (n_samples_new, ..) 
 
 - 
transform_resample(X, y)¶
- Fit to data, then transform it. - Fits transformer to X and y with optional parameters fit_params and returns a transformed version of X. - Parameters
- X (ndarray of shape (n_samples, ..)) – Input data. 
- y (ndarray of shape (n_samples,)) – Target data. 
 
- Returns
- Xt (ndarray of shape (n_samples, …)) – Transformed input. 
- yr (ndarray of shape (n_samples, …)) – Resampled target.