PermutationEntropy¶
- 
class gtda.time_series.PermutationEntropy(n_jobs=None)[source]¶
- Entropies from sets of permutations arg-sorting rows in arrays. - Given a two-dimensional array A, another array A’ of the same size is computed by arg-sorting each row in A. The permutation entropy 1 of A is the (base 2) Shannon entropy of the probability distribution given by the relative frequencies of each arg-sorting permutation in A’. - Parameters
- n_jobs (int or None, optional, default: - None) – The number of jobs to use for the computation.- Nonemeans 1 unless in a- joblib.parallel_backendcontext.- -1means using all processors.
 - References - 1
- C. Bandt and B. Pompe, “Permutation Entropy: A Natural Complexity Measure for Time Series”; Phys. Rev. Lett., 88.17, 2002; DOI: 10.1103/physrevlett.88.174102. 
 - 
fit(X, y=None)[source]¶
- Do nothing and return the estimator unchanged. - This method is here to implement the usual scikit-learn API and hence work in pipelines. - Parameters
- X (ndarray of shape (n_samples, n_points, n_dimensions)) – Input data. 
- y (None) – There is no need for a target in a transformer, yet the pipeline API requires this parameter. 
 
- Returns
- self 
- Return type
- object 
 
 - 
fit_transform(X, y=None, **fit_params)¶
- Fit to data, then transform it. - Fits transformer to X and y with optional parameters fit_params and returns a transformed version of X. - Parameters
- X (ndarray of shape (n_samples, n_points, n_dimensions)) – Input data. 
- y (None) – There is no need for a target in a transformer, yet the pipeline API requires this parameter. 
 
- Returns
- Xt – One permutation entropy per entry in X along axis 0. 
- Return type
- ndarray of int, shape (n_samples, 1) 
 
 - 
get_params(deep=True)¶
- Get parameters for this estimator. - Parameters
- deep (bool, default=True) – If True, will return the parameters for this estimator and contained subobjects that are estimators. 
- Returns
- params – Parameter names mapped to their values. 
- Return type
- mapping of string to any 
 
 - 
set_params(**params)¶
- Set the parameters of this estimator. - The method works on simple estimators as well as on nested objects (such as pipelines). The latter have parameters of the form - <component>__<parameter>so that it’s possible to update each component of a nested object.- Parameters
- **params (dict) – Estimator parameters. 
- Returns
- self – Estimator instance. 
- Return type
- object 
 
 - 
transform(X, y=None)[source]¶
- Calculate the permutation entropy of each two-dimensional array in X. - Parameters
- X (ndarray of shape (n_samples, n_points, n_dimensions)) – Input data. 
- y (None) – There is no need for a target in a transformer, yet the pipeline API requires this parameter. 
 
- Returns
- Xt – One permutation entropy per entry in X along axis 0. 
- Return type
- ndarray of int, shape (n_samples, 1)