Eccentricity¶
- 
class gtda.mapper.Eccentricity(exponent=2, metric='euclidean', metric_params={})[source]¶
- Eccentricities of points in a point cloud or abstract metric space. - Let D be a square matrix representing distances between points in a point cloud, or directly defining an abstract metric (or metric-like) space. The eccentricity of point i in the point cloud or abstract metric space is the p-norm (for some p) of row i in D. - Parameters
- exponent (int or float, optional, default: - 2) – p-norm exponent used to calculate eccentricities from the distance matrix.
- metric (str or function, optional, default: - 'euclidean') – Metric to use to compute the distance matrix if point cloud data is passed as input, or- 'precomputed'to specify that the input is already a distance matrix. If not- 'precomputed', it may be anything allowed by- scipy.spatial.distance.pdist.
- metric_params (dict, optional, default: - {}) – Additional keyword arguments for the metric function.
 
 - 
__init__(exponent=2, metric='euclidean', metric_params={})[source]¶
- Initialize self. See help(type(self)) for accurate signature. 
 - 
fit(X, y=None)[source]¶
- Do nothing and return the estimator unchanged. - This method exists to implement the usual scikit-learn API and hence work in pipelines. - Parameters
- X (array-like of shape (n_samples, n_features) or (n_samples, n_samples)) – Input data. 
- y (None) – There is no need for a target in a transformer, yet the pipeline API requires this parameter. 
 
- Returns
- self 
- Return type
- object 
 
 - 
fit_transform(X, y=None, **fit_params)¶
- Fit to data, then transform it. - Fits transformer to X and y with optional parameters fit_params and returns a transformed version of X. - Parameters
- X (array-like of shape (n_samples, n_features) or (n_samples, n_samples)) – Input data. 
- y (None) – There is no need for a target in a transformer, yet the pipeline API requires this parameter. 
 
- Returns
- Xt – Column vector of eccentricities of points in X. 
- Return type
- ndarray of shape (n_samples, 1) 
 
 - 
get_params(deep=True)¶
- Get parameters for this estimator. - Parameters
- deep (bool, default=True) – If True, will return the parameters for this estimator and contained subobjects that are estimators. 
- Returns
- params – Parameter names mapped to their values. 
- Return type
- mapping of string to any 
 
 - 
set_params(**params)¶
- Set the parameters of this estimator. - The method works on simple estimators as well as on nested objects (such as pipelines). The latter have parameters of the form - <component>__<parameter>so that it’s possible to update each component of a nested object.- Parameters
- **params (dict) – Estimator parameters. 
- Returns
- self – Estimator instance. 
- Return type
- object 
 
 - 
transform(X, y=None)[source]¶
- Compute the eccentricities of points (i.e. rows) in X. - Parameters
- X (array-like of shape (n_samples, n_features) or (n_samples, n_samples)) – Input data. 
- y (None) – There is no need for a target in a transformer, yet the pipeline API requires this parameter. 
 
- Returns
- Xt – Column vector of eccentricities of points in X. 
- Return type
- ndarray of shape (n_samples, 1)