Labeller¶
-
class
gtda.time_series.
Labeller
(width=10, func=<function std>, func_params=None, percentiles=None, n_steps_future=1)[source]¶ Target creation from sliding windows over a time series.
Useful to define a time series forecasting task in which labels are obtained from future values of the input time series, via the application of a function to time windows.
- Parameters
width (int, optional, default:
10
) – Width of each sliding window. Each window containswidth + 1
objects from the original time series.func (callable, optional, default:
numpy.std
) – Function to be applied to each window.func_params (dict or None, optional, default:
None
) – Additional keyword arguments for func.percentiles (list of real numbers between 0 and 100 inclusive, or None, optional, default:
None
) – IfNone
, creates a target for a regression task. Otherwise, creates a target for an n-class classification task wheren = len(percentiles) + 1
.n_steps_future (int, optional, default:
1
) – Number of steps in the future for the predictive task.
-
thresholds_
¶ Values corresponding to each percentile, based on data seen in
fit
.- Type
list of floats or
None
if percentiles isNone
Examples
>>> import numpy as np >>> from gtda.time_series import Labeller >>> # Create a time series >>> X = np.arange(10).reshape(-1, 1) >>> labeller = Labeller(width=2) >>> # Fit and transform X >>> X, y = labeller.fit_transform_resample(X, X) >>> print(X) [[1] [2] [3] [4] [5] [6] [7] [8]] >>> print(y) [0.81649658 0.81649658 0.81649658 0.81649658 0.81649658 0.81649658 0.81649658 0.81649658]
-
__init__
(width=10, func=<function std>, func_params=None, percentiles=None, n_steps_future=1)[source]¶ Initialize self. See help(type(self)) for accurate signature.
-
fit
(X, y=None)[source]¶ Compute
thresholds_
and return the estimator.- Parameters
X (ndarray of shape (n_samples,) or (n_samples, 1)) – Time series to build a target for.
y (None) – There is no need for a target in a transformer, yet the pipeline API requires this parameter.
- Returns
self
- Return type
object
-
fit_transform
(X, y=None, **fit_params)¶ Fit to data, then transform it.
Fits transformer to X and y with optional parameters fit_params and returns a transformed version of X.
- Parameters
X (ndarray of shape (n_samples,) or (n_samples, 1)) – Time series to build a target for.
y (None) – There is no need for a target in a transformer, yet the pipeline API requires this parameter.
- Returns
Xt – The cut input time series.
- Return type
ndarray of shape (n_samples_new, 1)
-
fit_transform_resample
(X, y, **fit_params)¶ Fit to data, then transform the input and resample the target. Fits transformer to X and y with optional parameters fit_params and returns a transformed version of X ans a resampled version of y.
- Parameters
X (ndarray of shape (n_samples, ..)) – Input data.
y (ndarray of shape (n_samples,)) – Target data.
- Returns
Xt (ndarray of shape (n_samples, …)) – Transformed input.
yr (ndarray of shape (n_samples, …)) – Resampled target.
-
get_params
(deep=True)¶ Get parameters for this estimator.
- Parameters
deep (bool, default=True) – If True, will return the parameters for this estimator and contained subobjects that are estimators.
- Returns
params – Parameter names mapped to their values.
- Return type
mapping of string to any
-
resample
(y, X=None)[source]¶ Resample y.
- Parameters
y (ndarray of shape (n_samples,)) – Time series to build a target for.
X (None) – There is no need for X, yet the pipeline API requires this parameter.
- Returns
yr – Target for the prediction task.
- Return type
ndarray of shape (n_samples_new,)
-
set_params
(**params)¶ Set the parameters of this estimator.
The method works on simple estimators as well as on nested objects (such as pipelines). The latter have parameters of the form
<component>__<parameter>
so that it’s possible to update each component of a nested object.- Parameters
**params (dict) – Estimator parameters.
- Returns
self – Estimator instance.
- Return type
object
-
transform
(X, y=None)[source]¶ Cuts X so it is aligned with y.
- Parameters
X (ndarray of shape (n_samples,) or (n_samples, 1)) – Time series to build a target for.
y (None) – There is no need for a target, yet the pipeline API requires this parameter.
- Returns
Xt – The cut input time series.
- Return type
ndarray of shape (n_samples_new, 1)
-
transform_resample
(X, y)¶ Fit to data, then transform it.
Fits transformer to X and y with optional parameters fit_params and returns a transformed version of X.
- Parameters
X (ndarray of shape (n_samples, ..)) – Input data.
y (ndarray of shape (n_samples,)) – Target data.
- Returns
Xt (ndarray of shape (n_samples, …)) – Transformed input.
yr (ndarray of shape (n_samples, …)) – Resampled target.