SlidingWindow¶
-
class
gtda.time_series.
SlidingWindow
(width=10, stride=1)[source]¶ Sliding windows onto the data.
Useful in time series analysis to convert a sequence of objects (scalar or array-like) into a sequence of windows on the original sequence. Each window stacks together consecutive objects, and consecutive windows are separated by a constant stride.
- Parameters
width (int, optional, default:
10
) – Width of each sliding window. Each window containswidth + 1
objects from the original time series.stride (int, optional, default:
1
) – Stride between consecutive windows.
Examples
>>> import numpy as np >>> from gtda.time_series import SlidingWindow >>> # Create a time series of two-dimensional vectors, and a corresponding >>> # time series of scalars >>> X = np.arange(20).reshape(-1, 2) >>> y = np.arange(10) >>> windows = SlidingWindow(width=2, stride=3) >>> # Fit and transform X >>> X_windows = windows.fit_transform(X) >>> print(X_windows) [[[ 2 3] [ 4 5] [ 6 7]] [[ 8 9] [10 11] [12 13]] [[14 15] [16 17] [18 19]]] >>> # Resample y >>> yr = windows.resample(y) >>> print(yr) [3 6 9]
See also
Notes
The current implementation favours the last entry over the first one, in the sense that the last entry of the last window always equals the last entry in the original time series. Hence, a number of initial entries (depending on the remainder of the division between \(n_\mathrm{ samples} - \mathrm{width} - 1\) and the stride) may be lost.
-
fit
(X, y=None)[source]¶ Do nothing and return the estimator unchanged.
This method is here to implement the usual scikit-learn API and hence work in pipelines.
- Parameters
X (ndarray of shape (n_samples, ..)) – Input data.
y (None) – Ignored.
- Returns
- Return type
self
-
fit_transform
(X, y=None, **fit_params)¶ Fit to data, then transform it.
Fits transformer to X and y with optional parameters fit_params and returns a transformed version of X.
- Parameters
X (ndarray of shape (n_samples, ..)) – Input data.
y (None) – Ignored.
- Returns
Xt – Windows of consecutive entries of the original time series.
n_windows = (n_samples - width - 1) // stride + 1
, andn_samples_window = width + 1
.- Return type
ndarray of shape (n_windows, n_samples_window, ..)
-
fit_transform_resample
(X, y, **fit_params)¶ Fit to data, then transform the input and resample the target. Fits transformer to X and y with optional parameters fit_params and returns a transformed version of X ans a resampled version of y.
- Parameters
X (ndarray of shape (n_samples, ..)) – Input data.
y (ndarray of shape (n_samples,)) – Target data.
- Returns
Xt (ndarray of shape (n_samples, …)) – Transformed input.
yr (ndarray of shape (n_samples, …)) – Resampled target.
-
get_params
(deep=True)¶ Get parameters for this estimator.
- Parameters
deep (bool, default=True) – If True, will return the parameters for this estimator and contained subobjects that are estimators.
- Returns
params – Parameter names mapped to their values.
- Return type
mapping of string to any
-
static
plot
(Xt, sample=0)[source]¶ Plot a sample from a collection of sliding windows, as a point cloud in 2D or 3D. If points in the window have more than three dimensions, only the first three are plotted.
Important: when using on the result Xt of calling
transform
onX
, ensure that each sample inX
is a point inn_dimensions
-dimensional space withn_dimensions > 1
.- Parameters
Xt (ndarray of shape (n_samples, n_points, n_dimensions)) – Collection of sliding windows, each containing
n_points
points inn_dimensions
-dimensional space, such as returned bytransform
.sample (int, optional, default:
0
) – Index of the sample in Xt to be plotted.
-
resample
(y, X=None)[source]¶ Resample y so that, for any i > 0, the minus i-th entry of the resampled vector corresponds in time to the last entry of the minus i-th window produced by
transform
.- Parameters
y (ndarray of shape (n_samples,)) – Target.
X (None) – There is no need for input data, yet the pipeline API requires this parameter.
- Returns
yr – The resampled target.
n_samples_new = (n_samples - time_delay * (dimension - 1) - 1) // stride + 1
.- Return type
ndarray of shape (n_samples_new,)
-
set_params
(**params)¶ Set the parameters of this estimator.
The method works on simple estimators as well as on nested objects (such as pipelines). The latter have parameters of the form
<component>__<parameter>
so that it’s possible to update each component of a nested object.- Parameters
**params (dict) – Estimator parameters.
- Returns
self – Estimator instance.
- Return type
object
-
transform
(X, y=None)[source]¶ Slide windows over X.
- Parameters
X (ndarray of shape (n_samples, ..)) – Input data.
y (None) – Ignored.
- Returns
Xt – Windows of consecutive entries of the original time series.
n_windows = (n_samples - width - 1) // stride + 1
, andn_samples_window = width + 1
.- Return type
ndarray of shape (n_windows, n_samples_window, ..)
-
transform_resample
(X, y)¶ Fit to data, then transform it.
Fits transformer to X and y with optional parameters fit_params and returns a transformed version of X.
- Parameters
X (ndarray of shape (n_samples, ..)) – Input data.
y (ndarray of shape (n_samples,)) – Target data.
- Returns
Xt (ndarray of shape (n_samples, …)) – Transformed input.
yr (ndarray of shape (n_samples, …)) – Resampled target.