ForgetDimension¶
- 
class gtda.diagrams.ForgetDimension[source]¶
- Replaces all homology dimensions in persistence diagrams with - numpy.inf.- Useful when downstream tasks require the use of topological features all at once – and not separated between different homology dimensions. - See also - 
fit(X, y=None)[source]¶
- Do nothing and return the estimator unchanged. - This method is here to implement the usual scikit-learn API and hence work in pipelines. - Parameters
- X (ndarray of shape (n_samples, n_features, 3)) – Input data. Array of persistence diagrams, each a collection of triples [b, d, q] representing persistent topological features through their birth (b), death (d) and homology dimension (q). 
- y (None) – There is no need for a target in a transformer, yet the pipeline API requires this parameter. 
 
- Returns
- self 
- Return type
- object 
 
 - 
fit_transform(X, y=None, **fit_params)¶
- Fit to data, then transform it. - Fits transformer to X and y with optional parameters fit_params and returns a transformed version of X. - Parameters
- X (ndarray of shape (n_samples, n_features, 3)) – Input data. Array of persistence diagrams, each a collection of triples [b, d, q] representing persistent topological features through their birth (b), death (d) and homology dimension (q). 
- y (None) – There is no need for a target in a transformer, yet the pipeline API requires this parameter. 
 
- Returns
- Xt – Output persistence diagram. 
- Return type
- ndarray of shape (n_samples, n_features, 3) 
 
 - 
fit_transform_plot(X, y=None, sample=0, **plot_params)¶
- Fit to data, then apply - transform_plot.- Parameters
- X (ndarray of shape (n_samples, ..)) – Input data. 
- y (ndarray of shape (n_samples,) or None) – Target values for supervised problems. 
- sample (int) – Sample to be plotted. 
- **plot_params – Optional plotting parameters. 
 
- Returns
- Xt – Transformed one-sample slice from the input. 
- Return type
- ndarray of shape (1, ..) 
 
 - 
get_params(deep=True)¶
- Get parameters for this estimator. - Parameters
- deep (bool, default=True) – If True, will return the parameters for this estimator and contained subobjects that are estimators. 
- Returns
- params – Parameter names mapped to their values. 
- Return type
- mapping of string to any 
 
 - 
static plot(Xt, sample=0)[source]¶
- Plot a sample from a collection of persistence diagrams. - Parameters
- Xt (ndarray of shape (n_samples, n_points, 3)) – Collection of persistence diagrams, such as returned by - transform.
- sample (int, optional, default: - 0) – Index of the sample in Xt to be plotted.
 
 
 - 
set_params(**params)¶
- Set the parameters of this estimator. - The method works on simple estimators as well as on nested objects (such as pipelines). The latter have parameters of the form - <component>__<parameter>so that it’s possible to update each component of a nested object.- Parameters
- **params (dict) – Estimator parameters. 
- Returns
- self – Estimator instance. 
- Return type
- object 
 
 - 
transform(X, y=None)[source]¶
- Replace all homology dimensions in X with - numpy.inf.- Parameters
- X (ndarray of shape (n_samples, n_features, 3)) – Input data. Array of persistence diagrams, each a collection of triples [b, d, q] representing persistent topological features through their birth (b), death (d) and homology dimension (q). 
- y (None) – There is no need for a target in a transformer, yet the pipeline API requires this parameter. 
 
- Returns
- Xt – Output persistence diagram. 
- Return type
- ndarray of shape (n_samples, n_features, 3) 
 
 - 
transform_plot(X, sample=0, **plot_params)¶
- Take a one-sample slice from the input collection and transform it. Before returning the transformed object, plot the transformed sample. - Parameters
- X (ndarray of shape (n_samples, ..)) – Input data. 
- sample (int) – Sample to be plotted. 
- plot_params (dict) – Optional plotting parameters. 
 
- Returns
- Xt – Transformed one-sample slice from the input. 
- Return type
- ndarray of shape (1, ..) 
 
 
-