"""Vector representations of persistence diagrams."""
# License: GNU AGPLv3
import types
from numbers import Real
import numpy as np
import plotly.graph_objects as gobj
from joblib import Parallel, delayed, effective_n_jobs
from sklearn.base import BaseEstimator, TransformerMixin
from sklearn.utils import gen_even_slices
from sklearn.utils.validation import check_is_fitted
from ._metrics import betti_curves, landscapes, heats, \
persistence_images, silhouettes
from ._utils import _subdiagrams, _bin, _calculate_weights
from ..base import PlotterMixin
from ..plotting import plot_heatmap
from ..utils._docs import adapt_fit_transform_docs
from ..utils.intervals import Interval
from ..utils.validation import validate_params, check_diagrams
def identity(x):
"""The identity function."""
return x
[docs]@adapt_fit_transform_docs
class BettiCurve(BaseEstimator, TransformerMixin, PlotterMixin):
""":ref:`Betti curves <betti_curve>` of persistence diagrams.
Given a persistence diagram consisting of birth-death-dimension triples
[b, d, q], subdiagrams corresponding to distinct homology dimensions are
considered separately, and their respective Betti curves are obtained by
evenly sampling the :ref:`filtration parameter <filtered_complex>`.
Parameters
----------
n_bins : int, optional, default: ``100``
The number of filtration parameter values, per available homology
dimension, to sample during :meth:`fit`.
n_jobs : int or None, optional, default: ``None``
The number of jobs to use for the computation. ``None`` means 1
unless in a :obj:`joblib.parallel_backend` context. ``-1`` means
using all processors.
Attributes
----------
homology_dimensions_ : list
Homology dimensions seen in :meth:`fit`, sorted in ascending order.
samplings_ : dict
For each number in `homology_dimensions_`, a discrete sampling of
filtration parameters, calculated during :meth:`fit` according to the
minimum birth and maximum death values observed across all samples.
See also
--------
PersistenceLandscape, PersistenceEntropy, HeatKernel, Amplitude, \
PairwiseDistance, Silhouette, PersistenceImage,\
gtda.homology.VietorisRipsPersistence
Notes
-----
The samplings in :attr:`samplings_` are in general different between
different homology dimensions. This means that the j-th entry of a Betti
curve in homology dimension q typically arises from a different parameter
values to the j-th entry of a curve in dimension q'.
"""
_hyperparameters = {
'n_bins': {'type': int, 'in': Interval(1, np.inf, closed='left')}}
[docs] def __init__(self, n_bins=100, n_jobs=None):
self.n_bins = n_bins
self.n_jobs = n_jobs
[docs] def fit(self, X, y=None):
"""Store all observed homology dimensions in
:attr:`homology_dimensions_` and, for each dimension separately,
store evenly sample filtration parameter values in :attr:`samplings_`.
Then, return the estimator.
This method is here to implement the usual scikit-learn API and hence
work in pipelines.
Parameters
----------
X : ndarray of shape (n_samples, n_features, 3)
Input data. Array of persistence diagrams, each a collection of
triples [b, d, q] representing persistent topological features
through their birth (b), death (d) and homology dimension (q).
y : None
There is no need for a target in a transformer, yet the pipeline
API requires this parameter.
Returns
-------
self : object
"""
X = check_diagrams(X)
validate_params(
self.get_params(), self._hyperparameters, exclude=['n_jobs'])
self.homology_dimensions_ = sorted(list(set(X[0, :, 2])))
self._n_dimensions = len(self.homology_dimensions_)
self._samplings, _ = _bin(X, metric='betti', n_bins=self.n_bins)
self.samplings_ = {dim: s.flatten()
for dim, s in self._samplings.items()}
return self
[docs] def plot(self, Xt, sample=0, homology_dimensions=None):
"""Plot a sample from a collection of Betti curves arranged as in
the output of :meth:`transform`. Include homology in multiple
dimensions.
Parameters
----------
Xt : ndarray of shape (n_samples, n_homology_dimensions, n_bins)
Collection of Betti curves, such as returned by :meth:`transform`.
sample : int, optional, default: ``0``
Index of the sample in `Xt` to be plotted.
homology_dimensions : list, tuple or None, optional, default: ``None``
Which homology dimensions to include in the plot. ``None`` means
plotting all dimensions present in :attr:`homology_dimensions_`.
"""
check_is_fitted(self)
if homology_dimensions is None:
_homology_dimensions = list(enumerate(self.homology_dimensions_))
else:
_homology_dimensions = []
for dim in homology_dimensions:
if dim not in self.homology_dimensions_:
raise ValueError(
f'All homology dimensions must be in '
f'self.homology_dimensions_ which is '
f'{self.homology_dimensions_}. {dim} is not.')
else:
homology_dimensions_arr = np.array(
self.homology_dimensions_)
ix = np.flatnonzero(homology_dimensions_arr == dim)[0]
_homology_dimensions.append((ix, dim))
layout = {
"xaxis1": {
"title": "Filtration parameter",
"side": "bottom",
"type": "linear",
"ticks": "outside",
"anchor": "x1",
"showline": True,
"zeroline": True,
"showexponent": "all",
"exponentformat": "e"
},
"yaxis1": {
"title": "Betti number",
"side": "left",
"type": "linear",
"ticks": "outside",
"anchor": "y1",
"showline": True,
"zeroline": True,
"showexponent": "all",
"exponentformat": "e"
},
"plot_bgcolor": "white"
}
fig = gobj.Figure(layout=layout)
fig.update_xaxes(zeroline=True, linewidth=1, linecolor='black',
mirror=False)
fig.update_yaxes(zeroline=True, linewidth=1, linecolor='black',
mirror=False)
for ix, dim in _homology_dimensions:
fig.add_trace(gobj.Scatter(x=self.samplings_[dim],
y=Xt[sample][ix],
mode='lines', showlegend=True,
name=f'H{int(dim)}'))
fig.show()
[docs]@adapt_fit_transform_docs
class PersistenceLandscape(BaseEstimator, TransformerMixin, PlotterMixin):
""":ref:`Persistence landscapes <persistence_landscape>` of persistence
diagrams.
Given a persistence diagram consisting of birth-death-dimension triples
[b, d, q], subdiagrams corresponding to distinct homology dimensions are
considered separately, and layers of their respective persistence
landscapes are obtained by evenly sampling the :ref:`filtration parameter
<filtered_complex>`.
Parameters
----------
n_layers : int, optional, default: ``1``
How many layers to consider in the persistence landscape.
n_bins : int, optional, default: ``100``
The number of filtration parameter values, per available
homology dimension, to sample during :meth:`fit`.
n_jobs : int or None, optional, default: ``None``
The number of jobs to use for the computation. ``None`` means 1 unless
in a :obj:`joblib.parallel_backend` context. ``-1`` means using all
processors.
Attributes
----------
homology_dimensions_ : list
Homology dimensions seen in :meth:`fit`.
samplings_ : dict
For each number in `homology_dimensions_`, a discrete sampling of
filtration parameters, calculated during :meth:`fit` according to the
minimum birth and maximum death values observed across all samples.
See also
--------
BettiCurve, PersistenceEntropy, HeatKernel, Amplitude, \
PairwiseDistance, Silhouette, PersistenceImage, \
gtda.homology.VietorisRipsPersistence
Notes
-----
The samplings in :attr:`samplings_` are in general different between
different homology dimensions. This means that the j-th entry of the
k-layer of a persistence landscape in homology dimension q typically
arises from a different parameter value to the j-th entry of a k-layer in
dimension q'.
"""
_hyperparameters = {
'n_bins': {'type': int, 'in': Interval(1, np.inf, closed='left')},
'n_layers': {'type': int, 'in': Interval(1, np.inf, closed='left')}}
[docs] def __init__(self, n_layers=1, n_bins=100, n_jobs=None):
self.n_layers = n_layers
self.n_bins = n_bins
self.n_jobs = n_jobs
[docs] def fit(self, X, y=None):
"""Store all observed homology dimensions in
:attr:`homology_dimensions_` and, for each dimension separately,
store evenly sample filtration parameter values in :attr:`samplings_`.
Then, return the estimator.
This method is here to implement the usual scikit-learn API and hence
work in pipelines.
Parameters
----------
X : ndarray of shape (n_samples, n_features, 3)
Input data. Array of persistence diagrams, each a collection of
triples [b, d, q] representing persistent topological features
through their birth (b), death (d) and homology dimension (q).
y : None
There is no need for a target in a transformer, yet the pipeline
API requires this parameter.
Returns
-------
self : object
"""
X = check_diagrams(X)
validate_params(
self.get_params(), self._hyperparameters, exclude=['n_jobs'])
self.homology_dimensions_ = sorted(list(set(X[0, :, 2])))
self._n_dimensions = len(self.homology_dimensions_)
self._samplings, _ = _bin(X, metric="landscape", n_bins=self.n_bins)
self.samplings_ = {dim: s.flatten()
for dim, s in self._samplings.items()}
return self
[docs] def plot(self, Xt, sample=0, homology_dimensions=None):
"""Plot a sample from a collection of persistence landscapes arranged
as in the output of :meth:`transform`. Include homology in multiple
dimensions.
Parameters
----------
Xt : ndarray of shape (n_samples, n_homology_dimensions, n_layers, \
n_bins
Collection of persistence landscapes, such as returned by
:meth:`transform`.
sample : int, optional, default: ``0``
Index of the sample in `Xt` to be plotted.
homology_dimensions : list, tuple or None, optional, default: ``None``
Homology dimensions for which the landscape should be plotted.
``None`` means plotting all dimensions present in
:attr:`homology_dimensions_`.
"""
check_is_fitted(self)
if homology_dimensions is None:
_homology_dimensions = list(enumerate(self.homology_dimensions_))
else:
_homology_dimensions = []
for dim in homology_dimensions:
if dim not in self.homology_dimensions_:
raise ValueError(
f'All homology dimensions must be in '
f'self.homology_dimensions_ which is '
f'{self.homology_dimensions_}. {dim} is not.')
else:
homology_dimensions_arr = np.array(
self.homology_dimensions_)
ix = np.flatnonzero(homology_dimensions_arr == dim)[0]
_homology_dimensions.append((ix, dim))
layout = {
"xaxis1": {
"side": "bottom",
"type": "linear",
"ticks": "outside",
"anchor": "y1",
"showline": True,
"zeroline": True,
"showexponent": "all",
"exponentformat": "e"
},
"yaxis1": {
"side": "left",
"type": "linear",
"ticks": "outside",
"anchor": "x1",
"showline": True,
"zeroline": True,
"showexponent": "all",
"exponentformat": "e"
},
"plot_bgcolor": "white"
}
Xt_sample = Xt[sample]
for ix, dim in _homology_dimensions:
layout_dim = layout.copy()
layout_dim['title'] = "Persistence landscape for homology " + \
"dimension {}".format(int(dim))
fig = gobj.Figure(layout=layout_dim)
fig.update_xaxes(zeroline=True, linewidth=1, linecolor='black',
mirror=False)
fig.update_yaxes(zeroline=True, linewidth=1, linecolor='black',
mirror=False)
n_layers = Xt_sample.shape[1]
for layer in range(n_layers):
fig.add_trace(gobj.Scatter(x=self.samplings_[dim],
y=Xt_sample[ix, layer],
mode='lines', showlegend=True,
hoverinfo='none',
name=f"Layer {layer + 1}"))
fig.show()
[docs]@adapt_fit_transform_docs
class HeatKernel(BaseEstimator, TransformerMixin, PlotterMixin):
"""Convolution of persistence diagrams with a Gaussian kernel.
Based on ideas in [1]_. Given a persistence diagram consisting of
birth-death-dimension triples [b, d, q], subdiagrams corresponding to
distinct homology dimensions are considered separately and regarded as sums
of Dirac deltas. Then, the convolution with a Gaussian kernel is computed
over a rectangular grid of locations evenly sampled from appropriate
ranges of the :ref:`filtration parameter <filtered_complex>`. The
same is done with the reflected images of the subdiagrams about the
diagonal, and the difference between the results of the two convolutions is
computed. The result can be thought of as a (multi-channel) raster image.
Parameters
----------
sigma : float, optional default ``1.``
Standard deviation for Gaussian kernel.
n_bins : int, optional, default: ``100``
The number of filtration parameter values, per available homology
dimension, to sample during :meth:`fit`.
n_jobs : int or None, optional, default: ``None``
The number of jobs to use for the computation. ``None`` means 1 unless
in a :obj:`joblib.parallel_backend` context. ``-1`` means using all
processors.
Attributes
----------
homology_dimensions_ : list
Homology dimensions seen in :meth:`fit`.
samplings_ : dict
For each number in `homology_dimensions_`, a discrete sampling of
filtration parameters, calculated during :meth:`fit` according to the
minimum birth and maximum death values observed across all samples.
See also
--------
BettiCurve, PersistenceLandscape, PersistenceEntropy, Amplitude, \
PairwiseDistance, Silhouette, PersistenceImage, \
gtda.homology.VietorisRipsPersistence
Notes
-----
The samplings in :attr:`samplings_` are in general different between
different homology dimensions. This means that the (i, j)-th pixel
of an image in homology dimension q typically arises from a different
pair of parameter values to the (i, j)-th pixel of an image in
dimension q'.
References
----------
.. [1] J. Reininghaus, S. Huber, U. Bauer, and R. Kwitt, "A Stable
Multi-Scale Kernel for Topological Machine Learning"; *2015 IEEE
Conference on Computer Vision and Pattern Recognition (CVPR)*,
pp. 4741--4748, 2015; doi: `10.1109/CVPR.2015.7299106
<http://dx.doi.org/10.1109/CVPR.2015.7299106>`_.
"""
_hyperparameters = {
'n_bins': {'type': int, 'in': Interval(1, np.inf, closed='left')},
'sigma': {'type': Real, 'in': Interval(0, np.inf, closed='neither')}}
[docs] def __init__(self, sigma=1., n_bins=100, n_jobs=None):
self.sigma = sigma
self.n_bins = n_bins
self.n_jobs = n_jobs
[docs] def fit(self, X, y=None):
"""Store all observed homology dimensions in
:attr:`homology_dimensions_` and, for each dimension separately,
store evenly sample filtration parameter values in :attr:`samplings_`.
Then, return the estimator.
This method is here to implement the usual scikit-learn API and hence
work in pipelines.
Parameters
----------
X : ndarray of shape (n_samples, n_features, 3)
Input data. Array of persistence diagrams, each a collection of
triples [b, d, q] representing persistent topological features
through their birth (b), death (d) and homology dimension (q).
y : None
There is no need for a target in a transformer, yet the pipeline
API requires this parameter.
Returns
-------
self : object
"""
X = check_diagrams(X)
validate_params(
self.get_params(), self._hyperparameters, exclude=['n_jobs'])
self.homology_dimensions_ = sorted(list(set(X[0, :, 2])))
self._n_dimensions = len(self.homology_dimensions_)
self._samplings, self._step_size = _bin(
X, metric='heat', n_bins=self.n_bins)
self.samplings_ = {dim: s.flatten()
for dim, s in self._samplings.items()}
return self
[docs] def plot(self, Xt, sample=0, homology_dimension_ix=0,
colorscale='blues'):
"""Plot a single channel – corresponding to a given homology
dimension – in a sample from a collection of heat kernel images.
Parameters
----------
Xt : ndarray of shape (n_samples, n_homology_dimensions, n_bins, \
n_bins)
Collection of multi-channel raster images, such as returned by
:meth:`transform`.
sample : int, optional, default: ``0``
Index of the sample in `Xt` to be selected.
homology_dimension_ix : int, optional, default: ``0``
Index of the channel in the selected sample to be plotted. If
`Xt` is the result of a call to :meth:`transform` and this
index is i, the plot corresponds to the homology dimension given by
the i-th entry in :attr:`homology_dimensions_`.
colorscale : str, optional, default: ``'blues'``
Color scale to be used in the heat map. Can be anything allowed by
:class:`plotly.graph_objects.Heatmap`.
"""
check_is_fitted(self)
return plot_heatmap(Xt[sample][homology_dimension_ix],
x=self.samplings_[homology_dimension_ix],
y=self.samplings_[homology_dimension_ix],
colorscale=colorscale)
[docs]@adapt_fit_transform_docs
class PersistenceImage(BaseEstimator, TransformerMixin, PlotterMixin):
""":ref:`Persistence images <persistence_image>` of persistence
diagrams.
Based on ideas in [1]_. Given a persistence diagram consisting of
birth-death-dimension triples [b, d, q], the equivalent diagrams of
birth-persistence-dimension [b, d-b, q] triples are computed and
subdiagrams corresponding to distinct homology dimensions are considered
separately and regarded as sums of Dirac deltas. Then, the convolution
with a Gaussian kernel is computed over a rectangular grid of locations
evenly sampled from appropriate ranges of the :ref:`filtration parameter
<filtered_complex>`. The result can be thought of as a (multi-channel)
raster image.
Parameters
----------
sigma : float, optional default ``1.``
Standard deviation for Gaussian kernel.
n_bins : int, optional, default: ``100``
The number of filtration parameter values, per available homology
dimension, to sample during :meth:`fit`.
weight_function : callable or None, default: ``None``
Function mapping the 1D array of persistence values of the points of an
input diagram to a 1D array of weights. ``None`` is equivalent to
passing the identity function.
n_jobs : int or None, optional, default: ``None``
The number of jobs to use for the computation. ``None`` means 1 unless
in a :obj:`joblib.parallel_backend` context. ``-1`` means using all
processors.
Attributes
----------
effective_weight_function_ : callable
Effective function corresponding to `weight_function`. Set in
:meth:`fit`.
homology_dimensions_ : list
Homology dimensions seen in :meth:`fit`.
samplings_ : dict
For each number in `homology_dimensions_`, a discrete sampling of
filtration parameters, calculated during :meth:`fit` according to the
minimum birth and maximum death values observed across all samples.
weights_ : dict
For each number in `homology_dimensions_`, an array of weights
corresponding to the persistence values obtained from `samplings_`
calculated during :meth:`fit` using the `weight_function`.
See also
--------
BettiCurve, PersistenceLandscape, PersistenceEntropy, HeatKernel, \
Amplitude, PairwiseDistance, gtda.homology.VietorisRipsPersistence
Notes
-----
The samplings in :attr:`samplings_` are in general different between
different homology dimensions. This means that the (i, j)-th pixel of a
persistence image in homology dimension q typically arises from a different
pair of parameter values to the (i, j)-th pixel of a persistence image in
dimension q'.
References
----------
.. [1] H. Adams, T. Emerson, M. Kirby, R. Neville, C. Peterson, P. Shipman,
S. Chepushtanova, E. Hanson, F. Motta, and L. Ziegelmeier,
"Persistence Images: A Stable Vector Representation of Persistent
Homology"; *Journal of Machine Learning Research 18, 1*,
pp. 218-252, 2017; doi: `10.5555/3122009.3122017
<http://dx.doi.org/10.5555/3122009.3122017>`_.
"""
_hyperparameters = {
'n_bins': {'type': int, 'in': Interval(1, np.inf, closed='left')},
'sigma': {'type': Real, 'in': Interval(0, np.inf, closed='neither')},
'weight_function': {'type': (types.FunctionType, type(None))}}
[docs] def __init__(self, sigma=1., n_bins=100, weight_function=None,
n_jobs=None):
self.sigma = sigma
self.n_bins = n_bins
self.weight_function = weight_function
self.n_jobs = n_jobs
[docs] def fit(self, X, y=None):
"""Store all observed homology dimensions in
:attr:`homology_dimensions_` and, for each dimension separately,
store evenly sample filtration parameter values in :attr:`samplings_`.
Then, return the estimator.
This method is here to implement the usual scikit-learn API and hence
work in pipelines.
Parameters
----------
X : ndarray of shape (n_samples, n_features, 3)
Input data. Array of persistence diagrams, each a collection of
triples [b, d, q] representing persistent topological features
through their birth (b), death (d) and homology dimension (q).
y : None
There is no need for a target in a transformer, yet the pipeline
API requires this parameter.
Returns
-------
self : object
"""
X = check_diagrams(X)
validate_params(
self.get_params(), self._hyperparameters, exclude=['n_jobs'])
if self.weight_function is None:
self.effective_weight_function_ = identity
else:
self.effective_weight_function_ = self.weight_function
self.homology_dimensions_ = sorted(list(set(X[0, :, 2])))
self._n_dimensions = len(self.homology_dimensions_)
self._samplings, self._step_size = _bin(
X, metric='persistence_image', n_bins=self.n_bins)
self.samplings_ = {dim: s.transpose()
for dim, s in self._samplings.items()}
self.weights_ = _calculate_weights(X, self.effective_weight_function_,
self._samplings)
return self
[docs] def plot(self, Xt, sample=0, homology_dimension_ix=0, colorscale='blues'):
"""Plot a single channel – corresponding to a given homology
dimension – in a sample from a collection of persistence images.
Parameters
----------
Xt : ndarray of shape (n_samples, n_homology_dimensions, n_bins, \
n_bins)
Collection of multi-channel raster images, such as returned by
:meth:`transform`.
sample : int, optional, default: ``0``
Index of the sample in `Xt` to be selected.
homology_dimension_ix : int, optional, default: ``0``
Index of the channel in the selected sample to be plotted. If
`Xt` is the result of a call to :meth:`transform` and this
index is i, the plot corresponds to the homology dimension given by
the i-th entry in :attr:`homology_dimensions_`.
colorscale : str, optional, default: ``'blues'``
Color scale to be used in the heat map. Can be anything allowed by
:class:`plotly.graph_objects.Heatmap`.
"""
check_is_fitted(self)
samplings_x, samplings_y = self.samplings_[homology_dimension_ix]
return plot_heatmap(Xt[sample][homology_dimension_ix],
x=samplings_x,
y=samplings_y,
colorscale=colorscale)
[docs]@adapt_fit_transform_docs
class Silhouette(BaseEstimator, TransformerMixin, PlotterMixin):
""":ref:`Power-weighted silhouettes <weighted_silhouette>` of persistence
diagrams.
Based on ideas in [1]_. Given a persistence diagram consisting of
birth-death-dimension triples [b, d, q], subdiagrams corresponding to
distinct homology dimensions are considered separately, and their
respective silhouette by sampling the silhouette function over evenly
spaced locations from appropriate ranges of the :ref:`filtration parameter
<filtered_complex>`.
Parameters
----------
power: float, optional, default: ``1.``
The power to which persistence values are raised to define the
:ref:`power-weighted silhouettes <weighted_silhouette>`.
n_bins : int, optional, default: ``100``
The number of filtration parameter values, per available homology
dimension, to sample during :meth:`fit`.
n_jobs : int or None, optional, default: ``None``
The number of jobs to use for the computation. ``None`` means 1
unless in a :obj:`joblib.parallel_backend` context. ``-1`` means
using all processors.
Attributes
----------
homology_dimensions_ : list
Homology dimensions seen in :meth:`fit`, sorted in ascending order.
samplings_ : dict
For each number in `homology_dimensions_`, a discrete sampling of
filtration parameters, calculated during :meth:`fit` according to the
minimum birth and maximum death values observed across all samples.
See also
--------
PersistenceLandscape, PersistenceEntropy, HeatKernel, Amplitude, \
PairwiseDistance, BettiCurve, gtda.homology.VietorisRipsPersistence
Notes
-----
The samplings in :attr:`samplings_` are in general different between
different homology dimensions. This means that the j-th entry of
a silhouette in homology dimension q typically arises from
a different parameter values to the j-th entry of a curve
in dimension q'.
References
----------
.. [1] F. Chazal, B. T. Fasy, F. Lecci, A. Rinaldo, and L. Wasserman,
"Stochastic Convergence of Persistence Landscapes and Silhouettes";
*In Proceedings of the thirtieth annual symposium on Computational
Geometry*, Kyoto, Japan, 2014, pp. 474–483;
doi: `10.1145/2582112.2582128
<http://dx.doi.org/10.1145/2582112.2582128>`_.
"""
_hyperparameters = {
'n_bins': {'type': int, 'in': Interval(1, np.inf, closed='left')},
'power': {'type': Real, 'in': Interval(0, np.inf, closed='right')}}
[docs] def __init__(self, power=1., n_bins=100, n_jobs=None):
self.power = power
self.n_bins = n_bins
self.n_jobs = n_jobs
[docs] def fit(self, X, y=None):
"""Store all observed homology dimensions in
:attr:`homology_dimensions_` and, for each dimension separately,
store evenly sample filtration parameter values in :attr:`samplings_`.
Then, return the estimator.
This method is here to implement the usual scikit-learn API and hence
work in pipelines.
Parameters
----------
X : ndarray of shape (n_samples, n_features, 3)
Input data. Array of persistence diagrams, each a collection of
triples [b, d, q] representing persistent topological features
through their birth (b), death (d) and homology dimension (q).
y : None
There is no need for a target in a transformer, yet the pipeline
API requires this parameter.
Returns
-------
self : object
"""
X = check_diagrams(X)
validate_params(
self.get_params(), self._hyperparameters, exclude=['n_jobs'])
self.homology_dimensions_ = sorted(list(set(X[0, :, 2])))
self._n_dimensions = len(self.homology_dimensions_)
self._samplings, _ = _bin(X, metric='silhouette', n_bins=self.n_bins)
self.samplings_ = {dim: s.flatten()
for dim, s in self._samplings.items()}
return self
[docs] def plot(self, Xt, sample=0, homology_dimensions=None):
"""Plot a sample from a collection of silhouettes arranged as in
the output of :meth:`transform`. Include homology in multiple
dimensions.
Parameters
----------
Xt : ndarray of shape (n_samples, n_homology_dimensions, n_bins)
Collection of silhouettes, such as returned by :meth:`transform`.
sample : int, optional, default: ``0``
Index of the sample in `Xt` to be plotted.
homology_dimensions : list, tuple or None, optional, default: ``None``
Which homology dimensions to include in the plot. ``None`` means
plotting all dimensions present in :attr:`homology_dimensions_`.
"""
check_is_fitted(self)
if homology_dimensions is None:
_homology_dimensions = list(enumerate(self.homology_dimensions_))
else:
_homology_dimensions = []
for dim in homology_dimensions:
if dim not in self.homology_dimensions_:
raise ValueError(
f'All homology dimensions must be in '
f'self.homology_dimensions_ which is '
f'{self.homology_dimensions_}. {dim} is not.')
else:
homology_dimensions_arr = np.array(
self.homology_dimensions_)
ix = np.flatnonzero(homology_dimensions_arr == dim)[0]
_homology_dimensions.append((ix, dim))
layout = {
"xaxis1": {
"title": "Filtration parameter",
"side": "bottom",
"type": "linear",
"ticks": "outside",
"anchor": "x1",
"showline": True,
"zeroline": True,
"showexponent": "all",
"exponentformat": "e"
},
"yaxis1": {
"side": "left",
"type": "linear",
"ticks": "outside",
"anchor": "y1",
"showline": True,
"zeroline": True,
"showexponent": "all",
"exponentformat": "e"
},
"plot_bgcolor": "white"
}
fig = gobj.Figure(layout=layout)
fig.update_xaxes(zeroline=True, linewidth=1, linecolor='black',
mirror=False)
fig.update_yaxes(zeroline=True, linewidth=1, linecolor='black',
mirror=False)
for ix, dim in _homology_dimensions:
fig.add_trace(gobj.Scatter(x=self.samplings_[dim],
y=Xt[sample][ix],
mode='lines', showlegend=True,
hoverinfo='none',
name=f'H{int(dim)}'))
fig.show()