"""The module :mod:`gtda.pipeline` extends scikit-learn's module by defining
Pipelines that include TransformerResamplers."""
# License: GNU AGPLv3
from sklearn import pipeline
from sklearn.base import clone
from sklearn.utils.metaestimators import if_delegate_has_method
from sklearn.utils.validation import check_memory
__all__ = ['Pipeline', 'make_pipeline']
[docs]class Pipeline(pipeline.Pipeline):
"""Pipeline of transforms and resamples with a final estimator.
Sequentially apply a list of transforms, sampling, and a final estimator.
Intermediate steps of the pipeline must be transformers or resamplers,
that is, they must implement fit, transform and sample methods.
The samplers are only applied during fit.
The final estimator only needs to implement fit.
The transformers and samplers in the pipeline can be cached using
``memory`` argument.
The purpose of the pipeline is to assemble several steps that can be
cross-validated together while setting different parameters.
For this, it enables setting parameters of the various steps using their
names and the parameter name separated by a '__', as in the example below.
A step's estimator may be replaced entirely by setting the parameter
with its name to another estimator, or a transformer removed by setting
it to 'passthrough' or ``None``.
Parameters
----------
steps : list
List of (name, transform) tuples (implementing
fit/transform) that are chained, in the order in which
they are chained, with the last object an estimator.
memory : Instance of joblib.Memory or string, optional (default: ``None``)
Used to cache the fitted transformers of the pipeline. By default,
no caching is performed. If a string is given, it is the path to
the caching directory. Enabling caching triggers a clone of
the transformers before fitting. Therefore, the transformer
instance given to the pipeline cannot be inspected
directly. Use the attribute ``named_steps`` or ``steps`` to
inspect estimators within the pipeline. Caching the
transformers is advantageous when fitting is time consuming.
Attributes
----------
named_steps : dict
Read-only attribute to access any step parameter by user given name.
Keys are step names and values are steps parameters.
See also
--------
make_pipeline : helper function to make pipeline.
Examples
--------
>>> import numpy as np
>>> import gtda.time_series as ts
>>> import gtda.homology as hl
>>> import gtda.diagrams as diag
>>> from gtda.pipeline import Pipeline
>>> import sklearn.preprocessing as skprep
>>>
>>> X = np.random.rand(600, 1)
>>> n_train, n_test = 400, 200
>>>
>>> labeller = ts.Labeller(size=6, percentiles=[80],
>>> n_steps_future=1)
>>> X_train = X[:n_train]
>>> y_train = X_train
>>> X_train, y_train = labeller.fit_transform_resample(X_train, y_train)
>>>
>>> print(X_train.shape, y_train.shape)
(395, 1) (395,)
>>> steps = [
>>> ('embedding', ts.SingleTakensEmbedding()),
>>> ('window', ts.SlidingWindow(size=6, stride=1)),
>>> ('diagram', hl.VietorisRipsPersistence()),
>>> ('rescaler', diag.Scaler()),
>>> ('filter', diag.Filtering(epsilon=0.1)),
>>> ('entropy', diag.PersistenceEntropy()),
>>> ('scaling', skprep.MinMaxScaler(copy=True)),
>>> ]
>>> pipeline = Pipeline(steps)
>>>
>>> Xt_train, yr_train = pipeline.\\
>>> fit_transform_resample(X_train, y_train)
>>>
>>> print(X_train_final.shape, y_train_final.shape)
(389, 2) (389,)
"""
def _fit(self, X, y=None, **fit_params):
self.steps = list(self.steps)
self._validate_steps()
# Setup the memory
memory = check_memory(self.memory)
fit_transform_one_cached = memory.cache(_fit_transform_one)
fit_transform_resample_one_cached = memory.cache(
_fit_transform_resample_one)
fit_params_steps = {name: {} for name, step in self.steps
if step is not None}
for pname, pval in fit_params.items():
step, param = pname.split('__', 1)
fit_params_steps[step][param] = pval
for step_idx, name, transformer in self._iter(with_final=False):
if hasattr(memory, 'location') and (memory.location is None):
# joblib >= 0.12. We do not clone when caching is disabled to
# preserve backward compatibility
cloned_transformer = transformer
else:
cloned_transformer = clone(transformer)
# Fit or load from cache the current transfomer
if hasattr(cloned_transformer, "resample") or \
hasattr(cloned_transformer, "fit_transform_resample"):
if y is None:
X, fitted_transformer = fit_transform_one_cached(
cloned_transformer, None, X, y,
**fit_params_steps[name])
else:
X, y, fitted_transformer = \
fit_transform_resample_one_cached(
cloned_transformer, None, X, y,
**fit_params_steps[name])
else:
X, fitted_transformer = fit_transform_one_cached(
cloned_transformer, None, X, y,
**fit_params_steps[name])
# Replace the transformer of the step with the fitted
# transformer. This is necessary when loading the transformer
# from the cache.
self.steps[step_idx] = (name, fitted_transformer)
if self._final_estimator == 'passthrough':
return X, y, {}
return X, y, fit_params_steps[self.steps[-1][0]]
[docs] def fit(self, X, y=None, **fit_params):
"""Fit the model.
Fit all the transforms/samplers one after the other and
transform/sample the data, then fit the transformed/sampled
data using the final estimator.
Parameters
----------
X : iterable
Training data. Must fulfill input requirements of first step of the
pipeline.
y : iterable or None, default: ``None``
Training targets. Must fulfill label requirements for all steps of
the pipeline.
**fit_params : dict of string -> object
Parameters passed to the :meth:`fit` method of each step, where
each parameter name is prefixed such that parameter ``p`` for step
``s`` has key ``s__p``.
Returns
-------
self : Pipeline
This estimator
"""
Xt, yr, fit_params = self._fit(X, y, **fit_params)
if self._final_estimator != 'passthrough':
self._final_estimator.fit(Xt, yr, **fit_params)
return self
[docs] @if_delegate_has_method(delegate='_final_estimator')
def fit_predict(self, X, y=None, **fit_params):
"""Applies fit_predict of last step in pipeline after transforms.
Applies fit_transforms of a pipeline to the data, followed by the
fit_predict method of the final estimator in the pipeline. Valid
only if the final estimator implements fit_predict.
Parameters
----------
X : iterable
Training data. Must fulfill input requirements of first step of
the pipeline.
y : iterable or None, default: ``None``
Training targets. Must fulfill label requirements for all steps
of the pipeline.
**fit_params : dict of string -> object
Parameters passed to the :meth:`fit` method of each step, where
each parameter name is prefixed such that parameter ``p`` for step
``s`` has key ``s__p``.
Returns
-------
y_pred : array-like
"""
Xt, yr, fit_params = self._fit(X, y, **fit_params)
return self.steps[-1][-1].fit_predict(Xt, yr, **fit_params)
@property
def resample(self):
"""Apply transformers/transformer_resamplers, and transform with the
final estimator.
This also works where final estimator is ``None``: all prior
transformations are applied.
Parameters
----------
y : array-like, shape = (n_samples,)
Data to resample. Must fulfill input requirements of first step
of the pipeline.
Returns
-------
yr : array-like, shape = (n_samples_new,)
"""
# _final_estimator is None or has transform, otherwise attribute error
if self._final_estimator != 'passthrough':
self._final_estimator.resample
return self._resample
def _resample(self, X, y=None):
yr = y
for _, _, transform in self._iter():
yr = transform.resample(yr)
return yr
@property
def transform_resample(self):
"""Apply transformers/transformer_resamplers, and transform with the
final estimator.
This also works where final estimator is ``None``: all prior
transformations are applied.
Parameters
----------
X : iterable
Data to transform. Must fulfill input requirements of first step
of the pipeline.
Returns
-------
Xt : array-like, shape = (n_samples_new, n_transformed_features)
yr : array-like, shape = (n_samples_new,)
"""
# _final_estimator is None or has transform, otherwise attribute error
final_estimator = self._final_estimator
if final_estimator != 'passthrough':
if hasattr(final_estimator, 'transform_resample'):
final_estimator.transform_resample
else:
final_estimator.transform
return self._transform_resample
def _transform_resample(self, X, y):
Xt, yr = X, y
for _, _, transform in self._iter():
if hasattr(transform, 'transform_resample'):
Xt, yr = transform.transform_resample(Xt, yr)
else:
Xt = transform.transform(Xt)
return Xt, yr
@property
def transform(self):
"""Apply transformers/transformer_resamplers, and transform with the
final estimator.
This also works where final estimator is ``None``: all prior
transformations are applied.
Parameters
----------
X : iterable
Data to transform. Must fulfill input requirements of first step
of the pipeline.
Returns
-------
Xt : array-like, shape (n_samples, n_transformed_features)
"""
# _final_estimator is None or has transform, otherwise attribute error
if self._final_estimator != 'passthrough':
self._final_estimator.transform
return self._transform
def _transform(self, X, y=None):
Xt = X
for _, _, transform in self._iter():
Xt = transform.transform(Xt)
return Xt
@property
def inverse_transform(self):
"""Apply inverse transformations in reverse order
All estimators in the pipeline must support ``inverse_transform``.
Parameters
----------
Xt : array-like, shape (n_samples, n_transformed_features)
Data samples, where ``n_samples`` is the number of samples and
``n_features`` is the number of features. Must fulfill
input requirements of last step of pipeline's
``inverse_transform`` method.
Returns
-------
Xt : array-like, shape (n_samples, n_features)
"""
# raise AttributeError if necessary for hasattr behaviour
for _, _, transform in self._iter():
transform.inverse_transform
return self._inverse_transform
def _inverse_transform(self, X, y=None):
Xt, yr = X, y
reverse_iter = reversed(list(self._iter()))
for _, _, transform in reverse_iter:
Xt = transform.inverse_transform(Xt, yr)
return Xt
[docs] @if_delegate_has_method(delegate='_final_estimator')
def score(self, X, y=None, sample_weight=None):
"""Apply transformers/samplers, and score with the final estimator
Parameters
----------
X : iterable
Data to predict on. Must fulfill input requirements of first step
of the pipeline.
y : iterable or None, default: ``None``
Targets used for scoring. Must fulfill label requirements for all
steps of the pipeline.
sample_weight : array-like or None, default: ``None``
If not None, this argument is passed as ``sample_weight`` keyword
argument to the ``score`` method of the final estimator.
Returns
-------
score : float
"""
Xt, yr = X, y
for _, _, transform in self._iter(with_final=False):
if (hasattr(transform, "transform_resample")):
Xt, yr = transform.transform_resample(Xt, yr)
else:
Xt = transform.transform(Xt)
score_params = {}
if sample_weight is not None:
score_params['sample_weight'] = sample_weight
return self.steps[-1][-1].score(Xt, yr, **score_params)
def _fit_transform_one(transformer, weight, X, y, **fit_params):
if hasattr(transformer, 'fit_transform'):
X_res = transformer.fit_transform(X, y, **fit_params)
else:
X_res = transformer.fit(X, y, **fit_params).transform(X)
# if we have a weight for this transformer, multiply output
if weight is None:
return X_res, transformer
return X_res * weight, transformer
def _fit_transform_resample_one(transformer_resampler, weight,
X, y, **fit_params):
if hasattr(transformer_resampler, 'fit_transform_resample'):
X_res, y_res = transformer_resampler.fit_transform_resample(
X, y, **fit_params)
else:
X_res, y_res = transformer_resampler.fit(
X, y, **fit_params).transform_resample(
X, y)
if weight is None:
return X_res, y_res, transformer_resampler
return X_res * weight, y_res, transformer_resampler
[docs]def make_pipeline(*steps, **kwargs):
"""Construct a Pipeline from the given estimators.
This is a shorthand for the Pipeline constructor; it does not require, and
does not permit, naming the estimators. Instead, their names will be set
to the lowercase of their types automatically.
Parameters
----------
*steps : list of estimators.
memory : None, str or object with the joblib.Memory interface, optional
Used to cache the fitted transformers of the pipeline. By default,
no caching is performed. If a string is given, it is the path to
the caching directory. Enabling caching triggers a clone of
the transformers before fitting. Therefore, the transformer
instance given to the pipeline cannot be inspected
directly. Use the attribute ``named_steps`` or ``steps`` to
inspect estimators within the pipeline. Caching the
transformers is advantageous when fitting is time consuming.
Returns
-------
p : Pipeline
See also
--------
imblearn.pipeline.Pipeline : Class for creating a pipeline of
transforms with a final estimator.
Examples
--------
>>> from sklearn.naive_bayes import GaussianNB
>>> from sklearn.preprocessing import StandardScaler
>>> make_pipeline(StandardScaler(), GaussianNB(priors=None))
... # doctest: +NORMALIZE_WHITESPACE
Pipeline(memory=None,
steps=[('standardscaler',
StandardScaler(copy=True, with_mean=True, with_std=True)),
('gaussiannb',
GaussianNB(priors=None, var_smoothing=1e-09))],
verbose=False)
"""
memory = kwargs.pop('memory', None)
if kwargs:
raise TypeError(
f'Unknown keyword arguments: "{list(kwargs.keys())[0]}"')
return Pipeline(pipeline._name_estimators(steps), memory=memory)