PersistenceEntropy¶
- 
class 
gtda.diagrams.PersistenceEntropy(n_jobs=None)[source]¶ Persistence entropies of persistence diagrams.
Given a persistence diagrams consisting of birth-death-dimension triples [b, d, q], subdiagrams corresponding to distinct homology dimensions are considered separately, and their respective persistence entropies are calculated as the (base e) entropies of the collections of differences d - b, normalized by the sum of all such differences.
- Parameters
 n_jobs (int or None, optional, default:
None) – The number of jobs to use for the computation.Nonemeans 1 unless in ajoblib.parallel_backendcontext.-1means using all processors.
- 
homology_dimensions\_ Homology dimensions seen in
fit, sorted in ascending order.- Type
 list
See also
BettiCurve,PersistenceLandscape,HeatKernel,Amplitude,PersistenceImage,PairwiseDistance,Silhouette,gtda.homology.VietorisRipsPersistence- 
fit(X, y=None)[source]¶ Store all observed homology dimensions in
homology_dimensions_. Then, return the estimator.This method is here to implement the usual scikit-learn API and hence work in pipelines.
- Parameters
 X (ndarray of shape (n_samples, n_features, 3)) – Input data. Array of persistence diagrams, each a collection of triples [b, d, q] representing persistent topological features through their birth (b), death (d) and homology dimension (q).
y (None) – There is no need for a target in a transformer, yet the pipeline API requires this parameter.
- Returns
 self
- Return type
 object
- 
fit_transform(X, y=None, **fit_params)¶ Fit to data, then transform it.
Fits transformer to X and y with optional parameters fit_params and returns a transformed version of X.
- Parameters
 X (ndarray of shape (n_samples, n_features, 3)) – Input data. Array of persistence diagrams, each a collection of triples [b, d, q] representing persistent topological features through their birth (b), death (d) and homology dimension (q).
y (None) – There is no need for a target in a transformer, yet the pipeline API requires this parameter.
- Returns
 Xt – Persistence entropies: one value per sample and per homology dimension seen in
fit. Index i along axis 1 corresponds to the i-th homology dimension inhomology_dimensions_.- Return type
 ndarray of shape (n_samples, n_homology_dimensions)
- 
get_params(deep=True)¶ Get parameters for this estimator.
- Parameters
 deep (bool, default=True) – If True, will return the parameters for this estimator and contained subobjects that are estimators.
- Returns
 params – Parameter names mapped to their values.
- Return type
 mapping of string to any
- 
set_params(**params)¶ Set the parameters of this estimator.
The method works on simple estimators as well as on nested objects (such as pipelines). The latter have parameters of the form
<component>__<parameter>so that it’s possible to update each component of a nested object.- Parameters
 **params (dict) – Estimator parameters.
- Returns
 self – Estimator instance.
- Return type
 object
- 
transform(X, y=None)[source]¶ Compute the persistence entropies of diagrams in X.
- Parameters
 X (ndarray of shape (n_samples, n_features, 3)) – Input data. Array of persistence diagrams, each a collection of triples [b, d, q] representing persistent topological features through their birth (b), death (d) and homology dimension (q).
y (None) – There is no need for a target in a transformer, yet the pipeline API requires this parameter.
- Returns
 Xt – Persistence entropies: one value per sample and per homology dimension seen in
fit. Index i along axis 1 corresponds to the i-th homology dimension inhomology_dimensions_.- Return type
 ndarray of shape (n_samples, n_homology_dimensions)