Metrics
The gtime.metrics
module contains a collection of different metrics.
- gtime.metrics.gmae(y_true: Union[DataFrame, List, ndarray], y_pred: Union[DataFrame, List, ndarray]) float
Compute the Geometric Mean Absolute Error between two vectors.
Parameters
- y_truearray-like, shape (length, 1), required
The first vector.
- y_predarray-like, shape (length, 1), required
The second vector.
Returns
- gmae_valuefloat
The geometric mean absolute error between the two vectors.
Examples
>>> from gtime.metrics import gmae >>> y_true = [0, 1, 2, 3, 6, 5] >>> y_pred = [-1, 4, 5, 10, 4, 1] >>> gmae(y_true, y_pred) 2.82
- gtime.metrics.log_mse(y_true: Union[DataFrame, List, ndarray], y_pred: Union[DataFrame, List, ndarray]) float
Compute the Mean Squared Log Error(MSLE) between two vectors. Note: Log_mse accepts only positive numbers as input
Parameters
- y_truearray-like, shape (length, 1), required
The first vector.
- y_predarray-like, shape (length, 1), required
The second vector.
Returns
- log_msefloat
The mean squared log error between the two vectors.
Examples
>>> from gtime.metrics import log_mse >>> y_true = [0, 1, 2, 3, 4, 5] >>> y_pred = [1.1, 2.3, 0.4, 3.9, 3.1, 4.6] >>> log_mse(y_true, y_pred) 0.244
- gtime.metrics.mae(y_true: Union[DataFrame, List, ndarray], y_pred: Union[DataFrame, List, ndarray]) float
Compute the Mean Absolute Error(also called, Mean Absolute Deviation(MAD) or Mean Ratio) between two vectors.
Parameters
- y_truearray-like, shape (length, 1), required
The first vector.
- y_predarray-like, shape (length, 1), required
The second vector.
Returns
- mae_valuefloat
The mean absolute error between the two vectors.
Examples
>>> from gtime.metrics import mae >>> y_true = [0, 1, 2, 3, 4, 5] >>> y_pred = [1.1, 2.3, 0.4, 3.9, 3.1, 4.6] >>> mae(y_true, y_pred) 1.033
- gtime.metrics.mape(y_true: Union[DataFrame, List, ndarray], y_pred: Union[DataFrame, List, ndarray]) float
Compute the Mean Absolute Percentage Error(MAPE) between two vectors.
Parameters
- y_truearray-like, shape (length, 1), required.
The first vector.
- y_predarray-like, shape (length, 1), required.
The second vector.
Returns
- mape_valuefloat
The mean absolute percentage error between the two vectors.
Examples
>>> from gtime.metrics import mape >>> y_true = [1, 1, 2, 3, 4, 5] >>> y_pred = [1, 2.3, 0.4, 3.9, 3.1, 4.6] >>> mape(y_true, y_pred) 45.08
- gtime.metrics.max_error(y_true: Union[DataFrame, List, ndarray], y_pred: Union[DataFrame, List, ndarray]) float
Compute the maximum error between two vectors.
Parameters
- y_truearray-like, shape (length, 1), required
The first vector.
- y_predarray-like, shape (length, 1), required
The second vector.
Returns
- errorfloat
The maximum error between the two vectors.
Examples
>>> from gtime.metrics import max_error >>> y_true = [0, 1, 2, 3, 4, 5] >>> y_pred = [1.1, 2.3, 0.4, 3.9, 3.1, 4.6] >>> max_error(y_true, y_pred) 1.6
- gtime.metrics.mse(y_true: Union[DataFrame, List, ndarray], y_pred: Union[DataFrame, List, ndarray]) float
Compute the Mean Squared Error(MSE) between two vectors.
Parameters
- y_truearray-like, shape (length, 1), required.
The first vector.
- y_predarray-like, shape (length, 1), required.
The second vector.
Returns
- msefloat
The Mean Squared Error between the two vectors.
Examples
>>> from gtime.metrics import mse >>> y_true = [0, 1, 2, 3, 4, 5] >>> y_pred = [1.1, 2.3, 0.4, 3.9, 3.1, 4.6] >>> mse(y_true, y_pred) 1.20
- gtime.metrics.non_zero_smape(y_true: Union[DataFrame, List, ndarray], y_pred: Union[DataFrame, List, ndarray], raise_error: bool = False) float
Compute the ‘Symmetric Mean Absolute Percentage Error’ (SMAPE) between two vectors without considering the 0 in the true values. Documentation here <https://en.wikipedia.org/wiki/Symmetric_mean_absolute_percentage_error>_.
Parameters
- y_truearray-like, shape (length, 1), required
The first vector.
- y_predarray-like, shape (length, 1), required
The second vector.
raise_error: bool, optional, default=``False``
Returns
- smapefloat
The smape between the two input vectors.
Examples
>>> from gtime.metrics import non_zero_smape >>> y_true = [0, 1, 2, 3, 4, 5] >>> y_pred = [1.1, 2.3, 0.4, 3.9, 3.1, 4.6] >>> non_zero_smape(y_true, y_pred) 0.7864893577539014
- gtime.metrics.r_square(y_true: Union[DataFrame, List, ndarray], y_pred: Union[DataFrame, List, ndarray]) float
Compute the R squared (Coefficient of Determination) between two vectors.
Parameters
- y_truearray-like, shape (length, 1), required
The first vector.
- y_predarray-like, shape (length, 1), required
The second vector.
Returns
- r_squarefloat
The R squared between the two vectors.
Examples
>>> from gtime.metrics import r_square >>> y_true = [0, 1, 2, 3, 4, 5] >>> y_pred = [1.1, 2.3, 0.4, 3.9, 3.1, 4.6] >>> r_square(y_true, y_pred) 0.586
- gtime.metrics.rmse(y_true: Union[DataFrame, List, ndarray], y_pred: Union[DataFrame, List, ndarray]) float
Compute the Root Mean Squared Error(RMSE) between two vectors.
Parameters
- y_truearray-like, shape (length, 1), required.
The first vector.
- y_predarray-like, shape (length, 1), required.
The second vector.
Returns
- rmsefloat
The Root Mean Squared Error between the two vectors.
Examples
>>> from gtime.metrics import rmse >>> y_true = [0, 1, 2, 3, 4, 5] >>> y_pred = [1.1, 2.3, 0.4, 3.9, 3.1, 4.6] >>> rmse(y_true, y_pred) 1.098
- gtime.metrics.rmsle(y_true: Union[DataFrame, List, ndarray], y_pred: Union[DataFrame, List, ndarray]) float
Compute the Root Mean Squared Log Error(RMSLE) between two vectors. Note: RMSLE accepts only positive numbers as input
Parameters
- y_truearray-like, shape (length, 1), required.
The first vector.
- y_predarray-like, shape (length, 1), required.
The second vector.
Returns
- rmsle_valuefloat
The root mean squared log error between the two vectors.
Examples
>>> from gtime.metrics import rmsle >>> y_true = [0, 1, 2, 3, 4, 5] >>> y_pred = [1.1, 2.3, 0.4, 3.9, 3.1, 4.6] >>> rmsle(y_true, y_pred) 0.49
- gtime.metrics.smape(y_true: Union[DataFrame, List, ndarray], y_pred: Union[DataFrame, List, ndarray]) float
Compute the ‘Symmetric Mean Absolute Percentage Error’ (SMAPE) between two vectors. Documentation here <https://en.wikipedia.org/wiki/Symmetric_mean_absolute_percentage_error>_.
Parameters
- y_truearray-like, shape (length, 1), required
The first vector.
- y_predarray-like, shape (length, 1), required
The second vector.
Returns
- smapefloat
The smape between the two input vectors.
Examples
>>> from gtime.metrics import smape >>> y_true = [0, 1, 2, 3, 4, 5] >>> y_pred = [1.1, 2.3, 0.4, 3.9, 3.1, 4.6] >>> smape(y_true, y_pred) 0.7864893577539014